
Algorithmes de Plans Coupants, Schémas de Compressions et

Apprentissage Actif

Ugo Louche et Liva Ralaivola ∗

Qarma, LIF - CNRS, Aix-Marseille Université.

April 30, 2015

Abstract

Les méthodes de plans coupants (Cutting Planes meth-
ods) sont des algorithmes d’optimisations bien connus.
Nous montrerons que ces méthodes peuvent être di-
rectement utilisées pour l’apprentissage automatique,
et non simplement comme un outil d’optimisation.
Plus particulièrement, elles permettent l’apprentissage
de classifieurs parcimonieux disposants de propriétés
de compressions avantageuses. De plus, nous mon-
trerons que de nouveaux algorithmes d’apprentissages
actifs peuvent être facilement dérivés à partir de
ces méthodes. Plus précisément, nous décrirons un
processus générique permettant d’adapter une large
gamme d’algorithmes d’apprentissages passifs pour
l’apprentissage actif. La pertinence de notre approche
sera appuyée par des simulations numériques dans le
cadre de problèmes d’apprentissages actifs comme pas-
sifs.

Mots-clef : Apprentissage Actif; Schéma de Compres-
sion; Classification; Méthode de Plans Coupants; Cen-
tre de Gravité

1 Introduction

We show that localization methods based on cutting
planes provide a natural framework to derive machine
learning algorithms for classification, both in the su-
pervised learning framework and the active learning
framework. Our claim is that cutting plane algorithms,
beyond their optimization purposes, embed features
that are beneficial for generalization purposes. In par-
ticular a) under mild conditions, they may provide
compression scheme with a compression rate that is

∗Email: firstname.lastname@lif.univ-mrs.fr

directly related to their aim at rapidly finding a solu-
tion of the localization problem and b) the pivotal step
of such algorithms, namely, the querying step, may be
slightly twisted so as to be active-learning friendly.
In the present paper, we show that existing learning
algorithms might be revisited from the cutting planes
point of view. Not only might the active learning SVM
procedure of Tong and Koller [TK02] be reinterpreted
as an algorithm falling under the framework we de-
scribe but so are the Bayes Point Machines [RHC01],
for which we will propose an active learning version of
it.
The problems we are interested in are linear clas-
sification problems. Given a training sample D

.
=

{(xn, yn)}n∈[N], with xn ∈ X
.
= Rd, yn ∈ Y

.
=

{−1,+1}, and [N]
.
= {1, . . . , N}, we are looking for

a classification vector w ∈ X that is an element of the
version space

W0(D)
.
= {w ∈ X : yn〈w, xn〉 ≥ 0, n ∈ [N]} , (1)

of D, i.e. the set of vectors w from X such that the
corresponding linear predictors

fw(x)
.
= sign(〈w, x〉) (2)

make no mistake on the training set D. In order to
render the exposition clearer, we make the assumption
that the training data are linearly separable so that
W0(D) is not empty. The case where W0(D) = ∅ can
be tackled with usual machine learning techniques —
e.g. the “λ-trick” and/or kernels [FS99] [RHC01].
Also, for the sake of brevity, we may useW0 instead of
W0(D) and thus drop the explicit dependence on D.
With the relevant notation at hand, the problem we
are interested in may be stated as:

find w ∈ W0, (3)

1

which might be simply rewritten as the problem of solv-
ing a set of linear inequalities

find w s.t.

{
w ∈ X
yn 〈w, xn〉 ≥ 0, n ∈ [N].

(4)

There is a variety of methods in the optimization litera-
ture from as back as the 50’s that are available to solve
such problems. Among them, we may mention (over-
)relaxation based methods [Gof80, MS54], simplex-
based algorithms and, of course, the Perceptron algo-
rithm and its numerous variants [Blo62,Nov62,Ros58].
Localization methods based on cutting planes, or, in
short, cutting planes algorithms, are well-studied algo-
rithms, well-known to be very efficient to solve such
problems. We will show that, when used to solve (4),
i) they naturally provide compression scheme algo-
rithms [FW95], and thus, learning algorithms that em-
bed features designed to ensure good generalization
properties and ii) they also set the ground for the de-
velopment of new active learning algorithms.

1.1 Related Works

Cutting-plane methods provide a family of optimizaton
procedures that have received some interest from the
machine learning community [JFY09, FS09, TVSL10].
However, they have mainly been considered as op-
timization methods to solve problems such as those
posed by support vector machines or, more generally,
regularized risk functionals. The more profound con-
nection of these methods with learning algorithms, that
is, procedures that are designed in a way to ensure gen-
eralization ability to the predictor they build (e.g. the
Perceptron algorithm) has less been studied; this is one
of the peculiarities of the present paper to discuss this
feature—to some extent, the work of [TVSL10], which
pinpoints how statistical regularization is beneficial for
the stabilization of cutting-plane methods, skims over
this connection. Within the vast literature of active
learning (see, e.g. [Set12]), we may single out a few
contributions our work is closely related to; they share
the common feature of focusing on/exploiting the ge-
ometry of the version space. The query strategies pro-
posed by [GK10] and [GSSS13] are based on multiple
estimations of the volume of the (potential) version
space, which, when added together might be computa-
tionally expensive. In comparison, in the active learn-
ing strategy we derive from the general cutting-plane
approach, we compute our queries from an approxi-
mated center of gravity of the version space, which is
computationally equivalent to a single volume estima-
tion. The work of [BBZ07], who propose a margin-

based query strategy provide theoretical justifications
of such strategies and gives insights on the foundations
the work of [TK02] hinges on. Our contribution is to
show how the cutting planes literature and its accom-
panying worst-case convergence analyzes may give rise
to theoretically supported query strategies that do not
have to hinge on margin-based arguments. To some ex-
tent, our work has connections with uncertainty-based
active learning (see, e.g. [LG94]) which advocates to
query the points whose class is the most uncertain;
our approach may be re-interpreted as a theoretically
motivated uncertainty measure based on the volume
reduction of the version space.

1.2 Outline

The paper is structured as follows. Section 2 pro-
vides some background to cutting planes methods and
their possible application to learning. Section 3 fur-
ther explores the connections between cutting planes
and learning algorithms and then provides a way to
turn cutting planes methods into an active learning
algorithms. Section 4 reports empirical results for al-
gorithms derived from our argumentation on the rele-
vance of cutting plane methods to machine learning.

2 Background

In this section, we first recall the general form of a
cutting plane algorithm to solve a localization problem.
We then specialize this algorithm to the case where the
convex space into which we want to find a point is the
version space associated to training set D. Finally,
in order for the reader to get a taste on how cutting
planes algorithms give rise to learning algorithms, i.e.
algorithms that embed features, namely, they define
compression schemes with targeted small compression
size, that are beneficial for generalization.

2.1 Vanilla Localization Algorithm
with Cutting Planes

In order to solve a problem like

find w ∈ C,

for C some closed convex set, a localization algorithm
based on cutting planes works as follows (see also the
synthetic depiction in Algorithm 1) [Kel60]. The algo-
rithm maintains and iteratively refines (i.e. reduces) a
closed convex set Ct that is known to contain C. From
Ct a query point is computed —there are several ways to

2

compute such query points; we will mention some when
specializing localization methods to the specific prob-
lem of finding a point in the version space later on—
which leads to two possible options: either a) wt is in C
and the tackled problem is solved or b) wt 6∈ C. In the
latter case, a so-called cutting plane oracle is queried
with wt upon which it returns the parameters (at, bt)
of the hyperplane {z : 〈at, z〉 = bt} such that this hy-
perplane separates wt from C, i.e., ∀w ∈ C, 〈at, w〉 > bt
and 〈at, wt〉 ≤ bt. The hyperplane is used to reduce Ct
into Ct∩{w : 〈at, w〉 > bt} (which still contains C). For
the specific problem (4) of finding a point in the ver-
sion space, the cutting planes rendered by the oracle
will be such that bt = 0.

Algorithm 1 Classical Cutting Plane Algorithm for
the localization of w ∈ C.
Ensure: w ∈ C

1: compute C0, such that C0 ⊃ C and C0 is convex and
closed.

2: t← 0
3: repeat
4: Compute query point wt in Ct
5: Ask the cutting plane oracle whether wt ∈ C
6: if wt /∈ C then
7: Receive a cutting plane (at, bt)
8: Ct+1 ← Ct ∩ {x : 〈at, x〉 > bt}
9: t← t+ 1

10: end if
11: until wt ∈ C
12: return wt

Algorithm 2 The Cutting Plane approach instanti-
ated to the problem of finding a point from the version
space of D.

Ensure: w solution of Problem (7)
1: C0 ← B
2: t← 0
3: repeat
4: wt ← Query(Ct) . Compute query point wt in
Ct

5: if wt /∈ W then
6: nt ← Pick(Ct, wt) . pick a cutting plane

index
7: Ct+1 ← Ct ∩ {z : ynt〈z, xnt〉 > 0}
8: t← t+ 1
9: end if

10: until wt ∈ W
11: return wt

2.2 Cutting Planes to Localize a Point
in the Version Space

Note that problem (4) is scale-insensitive: if w ∈ W0,
then λw ∈ W0 as well for any λ > 0. In order to get rid
of this degree of freedom and to make the use of cut-
ting planes algorithms possible (they require the sets
Ct to be bounded), we will restrict ourselves to finding
a solution vector w∗ both in W0 and in the unit ball

B .
= {w ∈ X : ‖w‖ ≤ 1} . (5)

In other words, we will be looking for w∗ in the con-
strained version space

W .
=W0 ∩ B, (6)

and the problem we face is therefore:

find w such that

{
w ∈ B
yn〈w, xn〉 ≥ 0, n ∈ [N]

(7)

In the case of Problem (7), the localization algorithm
described earlier translates into the one given in Al-
gorithm 2. The following changes might be observed
when comparing with Algorithm 1: C0 is now initial-
ized to B, the unit ball, and the cutting planes are
picked among the hyperplanes —i.e. the points of D—
defining the version space.

2.3 Query Point Generation

In both Algorithm 1 and Algorithm 2, the strategy to
compute a query point is left unspecified. There ac-
tually exist many ways to compute such query points,
but they all aim at a query point which calls for a cut-
ting plane that will divide the current enclosing convex
set Ct in the most stringent way. It turns out that such
guarantee might be expected when the query point is
as close as possible to the ‘center’ of Ct, so that the
volume of Ct is reduced with a positive factor —just
as in the well-known bisection method, where the fac-
tor is 1/2. The center of Ct is not defined in a unique
way, but for the most popular query methods, it may
refer to: a) the center of gravity of Ct, b) the center
of the largest ball inscribed in Ct, which is called the
Chebyshev center or c) the analytic center, which we
will not discuss further (the interested reader may re-
fer to [Nes95] for further details). We may mention
three things regarding the center of gravity: i) it is
NP-hard1 to exactly compute the center of gravity of
a convex set in an arbitrary n-dimensional space even

1To be precise, it is actually #P-hard.

3

though some practical approximation algorithms ex-
ist; ii) it is the query point that comes with the best
guarantees in terms of convergence speed of the cutting
plane method [DSP10]; iii) the center of gravity of a
polytope is precisely the point that is looked for in the
case of the theoretically founded Bayes Point Machines
of [RHC01].

3 Results

This section is devoted to some algorithmic results
that can be obtained when analyzing the behavior of
cutting-plane methods for the localization of a point in
the version space.

3.1 Cutting Planes Provide Sample
Compression Schemes

Let D .
=
⋃∞

n=1(X ×Y)n be the set of all finite training
samples made of pairs from X × Y. In short, sample
compression schemes [FW95] are learning algorithms
A : D → YX that are associated with a compression
function S : D → D so that, given any training sam-
ple D, we have A(D) = A(S(D)). Sample compres-
sion schemes are especially interesting when the size
|S(D)| of the compression set S(D) is small. Indeed,
generalization guarantees that come with these proce-
dures say that the generalization error of fD

.
= A(D) is,

with high probability (over the random draw of train-
ing setD according to an unknown and fix distribution)
bounded from above by something like

1

N − |S(D)|

N∑
n=1

I [fD(xn) 6= yn] +O
(√

1

N − |S(D)|

)
(8)

(see [FW95, GHST05] for a precise statement of the
bound). Among the most well-known learning com-
pression schemes, we find the Perceptron and the Sup-
port Vector Machines.
We claim that Algorithm 2, which finds a point in the
version space using cutting planes, may be a compres-
sion scheme.

Proposition 1. If Query(Ct) (line 4, Algorithm 2)
and Pick(Ct, wt) (line 6) are both deterministic then
Algorithm 2 is a sample compression scheme.

Proof. If the compression set is made of the training
examples that define the cutting planes, this result is a
direct consequence of the structure of Algorithm 2. A
proof by induction that essentially hinges on the fact
that, at each iteration t, the next query point is de-
terministically computed from Ct (only) gives the re-
sult.

Algorithm 3 Top : A Perceptron-based localization
algorithm for the case of problem (7). Bottom : The
slightly modified perceptron algorithm for compression
scheme.
Ensure: Problem (7)

1: C0 ← B
2: t← 1, w0 ← 0, w̃0 ← 0
3: repeat
4: w̃t ← Perceptron(w̃t−1, xn0

, · · · , xnt
)

5: wt ← w̃t/‖w̃t‖2
6: if wt /∈ W then
7: Pick a cutting plane index nt
8: Ct+1 ← Ct ∩ {z : ynt〈z, xnt〉 ≥ 0}
9: t← t+ 1

10: end if
11: until wt ∈ W
12: return wt

13:

14: function Perceptron(wstart, xn0 , · · · , xnN
)

15: t← 0
16: w0 ← wstart

17: while ∃ni : 〈wt, xni
〉 < 0 do

18: wt+1 ← wt + xni

19: t← t+ 1
20: end while
21: return wt

22: end function

A few observations can be made. First, the learning
algorithm obtained with the assumptions of Proposi-
tion 1 is a process sample compression scheme, that is,
even if we interrupt the learning before convergence has
occurred, running the algorithm on the partial com-
pression scheme obtained so far gives exactly the same
predictor. Second, it is obviously an aim to have fast
convergence of the localization procedure, where fast
convergence means few iterations of the cutting-plane
procedure. This directly translates into the idea of
finding a point in the version space that is expressed as
a combination as few vectors as possible, which, by (8),
is very beneficial for generalization purposes. Later, we
will see that there are settings for cutting-plane meth-
ods that come with guarantees on the number of iter-
ations, and therefore on |S(D)|, to reach convergence.

3.2 Perceptron-based Localization Al-
gorithm

One of the simplest ways to compute a query point wt

for Algorithm 2 is to run Rosenblatt’s Perceptron al-
gorithm [Ros58] at each step and query the normalized

4

solution wt = w̃t/‖w̃t‖2. Intuitively, we may expect
w̃t+1 to be ‘close’ to w̃t because Ct+1 is essentially the
intersection of Ct with a cutting plane and much of the
geometry of Ct might be preserved. According to this
intuition, w̃t should be a good starting point for the
Perceptron algorithm to be run and to have it output
w̃t+1. Algorithm 3 implements that idea, and reuses
the last query point as an initialization vector for the
Perceptron to compute the next query point. Addition-
ally, note that for Algorithm 3 to match Proposition 1 a
little technicality is needed: we require that datapoints
are selected in the lexicographical order2 when multiple
choices are possible (e.g. line 7 and 17). It turns out
this simple querying procedure enjoys the same conver-
gence rate than a regular Perceptron, with the added
empirically observed benefit of providing stronger com-
pression (see Section 4 for empirical results).

Proposition 2. Consider Problem (7) and let γ be
the radius of the largest inscribed sphere in W. De-
fine M the number of Perceptron updates performed
by the Perceptron-based Localization Algorithm 3 (i.e.
M is the number of times line 18 of Perceptron()
of Algorithm 3 is executed). Then the following holds:
M ≤ 1/γ2.

Proof. We recall that the usual definition of the mar-
gin of D is minx∈D〈w∗, x〉 and note that γ is re-
lated to it since ∀n ∈ [N], 〈w∗, xn〉/‖xn‖2 ≥ γ. Let
S .

= {a1, . . . aM} be the sequence of points used to per-
form Perceptron updates across a complete execution
of Algorithm 3. Thus, S is a sequence from D (with
possible duplicates) and w∗ achieves a margin at least
γ with all points in S. From [Blo62, Nov62] we know
that the number M of Perceptron updates on any ar-
bitrary sequence linearly separable with margin γ is no
more than 1/γ2. Since we use wt as a starting point
to compute wt+1, the execution of the cutting-plane
algorithm is tied to the execution of the Perceptron
algorithm on S. Therefore, there is less than 1/γ2 Per-
ceptron updates during the execution of the algorithm.
Alternatively, |S| ≤ 1/γ2 since all points in S corre-
spond to a Perceptron update, thus a mistake.

On a side note, the same argument can be applied to
obtain similar results with most Perceptron-like learn-
ing procedures (see for instance [LZH+02,CDK+06]).

Figure 1: An Example of version space where the Cheby-
shev Center (light blue) is a bad approximation of the grav-
ity center (dark blue).

3.3 Center of Gravity and Approxima-
tions

The question of computing a query point wt is of
central importance in cutting-plane localization algo-
rithms. As we have seen, a simple Perceptron can al-
ready yield interesting computational results for that
matter. A more assiduous analysis of this question
can be conducted by looking at the volume reduction
Vol(Ct+1)/Vol(Ct) of Ct from one iteration to the next.
The notion of center of gravity is going to be pivotal
to this end.

Definition 1 (Center of Gravity). Let C be a closed
set in Rn. The center of gravity (CG) cg(C) of C is
defined by as cg(C) .

=
∫
C zdz/

∫
C dz.

The center of gravity is deeply tied to the volume
of Ct and plays a central role in devising cutting-
plane algorithms for which the volume reduction
Vol(Ct+1)/Vol(Ct) is the largest. Theorem 1 reports
one of the most fundamental property of the center of
gravity (see [Gru60,New65,Lev65,BV08])

Theorem 1 (Partition of Convex bodies). Let C ∈
Rd a convex body of center of gravity cg(C) and h a
hyperplane such that cg(C) ∈ h. Thus, h divide C in
two subsets C1 and C2 and the following relations hold
for i = 1, 2: Vol(Ci) ≥ e−1Vol(C)

The center of gravity method proposed by [New65,
Lev65] consists in querying wt = cg(Ct) and typically

2This is an arbitrary choice and any total order over Rd can
be used instead

5

have a very fast convergence rate as the version space
is almost halved at each step. More precisely, a di-
rect consequence of Theorem 1 is that the volume of
Ct is bounded by Vol(Ct) ≤ (1 − 1/e)tVol(C0). How-
ever, computing the center a gravity is hard, making
the center of gravity method impractical. Instead, one
has to consider structural or numerical approximations
to the center of gravity.

Definition 2 (Chebyshev’s Center). Let C a set in Rn.
Chebyshev’s center (CC) of C, cc(C) is the center of the
largest inscribed ball in C:

cc(C) = arg min
ẑ

max
z
‖z − ẑ‖22.

Chebyshev’s center is used as a computationally effi-
cient approximation of the center of gravity for cutting-
plane algorithms since the late 70’s [EM75] (see, e.g.
[BV04] for a linear formulation of the problem). Un-
fortunately, the interesting property of Theorem 1 does
not carry over with Chebyshev’s center. One prob-
lem in machine learning related to Chebyshev’s cen-
ter is the extensively studied Support Vector Machine
(Svm) [Vap95] defined as :

min
w

1

2
‖w‖22 s.t.

{
w ∈ X
yn 〈w, xn〉 ≥ 1, n ∈ [N].

(9)

A notable property of the Svm is that its solution wSvm

is closely related to the center of the largest inscribed
ball in W and is an approximation of the center of
gravity [RHC01]. Indeed, wSvm is actually a rescaled
Chebyshev’s center [TK02] [RHC01].
On the other hand, numerical approximations aim at
finding a point that is in the close neighborhood of
the center of gravity. One of the contributions of this
paper is to give a generalized version of Theorem 1 for
approximations of the center of gravity, thus laying a
theoretical justification for these methods.

Theorem 2 (Generalized Partition of Convex bodies).
Let C be a closed convex body in Rd and cg(C) its center
of gravity. Let hx a hyperplane of normal vector x,
‖x‖2 = 1 and define the upper (resp. lower) partition
C+ (resp. C−) of C by hx as

C+ .
= C ∩

{
w ∈ Rd : 〈x,w〉 ≥ 0

}
C− .

= C ∩
{
w ∈ Rd : 〈x,w〉 < 0

}
.

The following holds true: if cg(C) + Λx ∈ C+ then

Vol(C+)/Vol(C) ≥ e−1(1− λ)d,

where

Λ = λΘd
Vol(C)HC+
RdHC−

,

with λ ∈ R an arbitrary real, Θd a constant depending
only on d, R the radius of the (d− 1)-dimensional ball
B of volume Vol [B]

.
= Vol

[
C ∩

{
w ∈ Rd : 〈x,w〉 = 0

}]
and HC+ = maxa∈C+ a

Tx (resp. HC− = mina∈C− a
Tx)

Proof. The proof is a (non-trivial) extension
of Grunbaum’s one for Theorem 1 [Gru60].
Due to space restriction, we cannot expose it
here in full and refer the interested reader to
http: // pageperso. lif. univ-mrs. fr/ ~ ugo.

louche/ paper/ activeCPSuppl. pdf

Theorem 2 extends Theorem 1 to the situation when an
approximation of the center of gravity is considered; it
reduces to Theorem 1 when applied to the very center
of gravity. This is to the best of our knowledge the
first result of this kind and this is a result that is of
its own interest, wich may benefit to many fields of
computer science. Here, the purpose of Theorem 2
is essentially to validate the use of approximations of
the center of gravity cg(C) in the procedures at hand,
which is inevitable due to the complexity of exactly
finding this point. We will more precisely use it in two
occasions: a) for center-of-gravity-based compression
scheme methods and b) in the active learning setting
(see below).

3.4 Active Learning with Cutting
Planes

An interesting situation of learning is that of active
learning when the algorithm is presented with unla-
belled data and it has to query for the labels of the
training points that carry the most information to
build a relevant decision boundary. Given a volume C
inside which a good classifier w∗ for the classification
task at hand is known to lie, the amount of information
carried by a labeled training point (x, y) (where y has
been queried) might be for instance measured by how
(x, y) can be used to identify within C an (hopefully
small) volume C′ ⊆ C where w∗ lives. Termed oth-
erwise, the amount of information provided by (x, y)
might be measured as the volume reduction induced by
the knowledge of (x, y): this is exactly the type of in-
formation cutting-plane methods build upon. We take
advantage of this philosophy shared by active learn-
ing methods and cutting-plane algorithms to argue it
is easy to transform a cutting-plane algorithm into an
active learning method. Based on the idea of maxi-
mum volume reduction, the question to address is sim-
ply that of identifying a training pattern x in D such
that, independently of the label it might receive, is
guaranteed to define a cutting hyperplane of equation

6

http://pageperso.lif.univ-mrs.fr/~ugo.louche/paper/activeCPSuppl.pdf
http://pageperso.lif.univ-mrs.fr/~ugo.louche/paper/activeCPSuppl.pdf

Algorithm 4 Top: a generic cutting-plane active
learning procedure; wt is computed as the ‘center’ of
Ct —center my refer to the center of gravity of the
Chebyshev center. Bottom: a possible implementa-
tion of Query(): sampling strategies are given in,
e.g., [RHC01,LV06,KN12].

1: C0 ← B
2: t← 0
3: repeat
4: wt ← center(Ct)
5: xnt , ynt ← Query(Ct, D)
6: if ynt〈wt, xnt〉 < 0 then
7: Ct+1 ← Ct ∩ {z : ynt

〈z, xnt
〉 ≥ 0}

8: t← t+ 1
9: end if

10: until Ct is small enough
11: return wt

12:

13: function Query(C, D)
14: Sample M points s1, . . . sM from C
15: g←

∑M
k=1 sk/M

16: x← arg minxi∈D〈g, xi〉
17: y ← get label from an expert
18: return x, y
19: end function

〈x,w〉 = 0 that intersects the current convex C in a con-
trolled way. To do so, a typical good query point is one
that is as close as possible to the ‘center’ of C, where
center may have the few meanings discussed above (cf.
center of gravity, Chebyshev’s center). The algorithm
given in Table 4 is a generic active learning algorithm
that is based on the classical cutting-plane approach.

Making active learning algorithms from cutting-plane
methods is a route that has been taken by [TK02], even
though the connection with cutting-plane algorithms
was not clearly identified.

Being able to approximate the center of gravity of a
convex polytope is pivotal for the design of active learn-
ing strategies. It is interesting to note that in the recent
years, methods have been devised to uniformly sample
from the version space such as the Hit-and-Run al-
gorithm of [LV06] or a billiard algorithm of [Ruj97].
More recently, the Dikin Walk algorithm of [KN12]
provided a strongly polynomial algorithm for approx-
imate uniform sampling over the version space while
the Expectation Propagation method of [Min13] gave
a Bayesian interpretation of billiard algorithms. No-
tably, these methods have been successfully used with
cutting planes for active Boosted Learning [TSCD11].
Another practical approach we should mention is the

one proposed in [RHC01] that consists in repeatedly
running a Perceptron over a permutation of the train-
ing set: in the active learning setting, the number of
labeled points available is just too low to produce in-
teresting approximation of the center of gravity with
this method.
A by-product of our active learning procedure is that
we now solve a Bayes Point Machine (BPM) prob-
lem [RHC01] at each step t by finding the center of
gravity of the current convex body Ct. Therefore, we
can turn our active learning procedure into a full active
learning algorithm—that we dub Active-BPM—for free
by using the center of gravity for classification. Note
that this is one of many possible instantiations of our
procedure, which is nonetheless of interest as it is the
BPM-counterpart the Active-SVM algorithm of Tong
and Koller [TK02].
In conclusion, Theorem 2 provides a general guideline
to systematically query the training point that comes
with the best volume reduction guarantees. This is
a theoretically sound and viable strategy for active
learning that comes with a theoretical bound on the
induced volume reduction, the lack of which was an
essential limit of the Chebyshev’s center-based method
of [TK02].

4 Numerical Simulations

Here, we present some empirical simulations based on
the algorithms described throughout this paper in both
passive and active learning settings.

4.1 Synthetic Data and Perceptron-
based Localization Algorithm

We generate a toy dataset of 1, 000 2-dimensional dat-
apoints. Each point is uniformly drawn on a 20-by-20
square centered at the origin. We label this dataset ac-
cording to a classifier w∗ uniformly drawn over the unit
circle. In order to have only positive labels, negative
examples are reflected through the origin. We then en-
force a minimal margin γ by pruning examples xi for
which 〈w∗, xi〉 < γ. This last modification allows us to
have some control over the size of the version spaceW.
The downside of this is that we no longer have exactly
1, 000 datapoints (though during our experiments we
noted that the size of the dataset stays mostly the same
for reasonable margin values).
For these experiments, we use the Perceptron-based
Localization algorithm (Algorithm 3). We implement
it with three different oracle strategies for selecting cut-

7

ting planes. The first strategy (which we call Largest
Error) picks the cutting plane with the lowest mar-
gin. The second one (Smallest Error) picks the cut-
ting plane with the highest negative margin, that is to
say points that are incorrectly classified but close to the
decision boundary. Finally, the third one (Random Er-
ror) simply picks a cutting plane with negative margin
at random. It should also be noted that our instan-
tiation of the Perceptron algorithm picks the update
vector that realizes the lowest margin for its internal
update—line (18) of Perceptron() in Algorithm 3.
This is mostly an arbitrary choice and we only men-
tion it for the sake of repoducibility.
The first experiment consists in a single run over a
dataset of margin γ = 0.1. We monitor both the num-
ber of cutting planes generated and the number of in-
ternal Perceptron updates for each cutting plane. The
presented results are averaged over 1, 000 runs.
The left pane of Figure 2 supports the soundness of
our approach in the case of a compression scheme with
no more than 6 cutting planes for the best strategy
(Largest Error). Additionally, we can observe a sharp
decrease after the third cutting plane with this strat-
egy and 80% of the time, only 4 cutting planes are
required to model the dataset. In contrast, the right-
hand side of Figure 2 reveals a trade-off between the
number of cutting planes used and the number of in-
ternal updates for each cutting plane. We observe a
smooth shift across our three strategies with Smallest
Error putting the emphasis on small number of inter-
nal updates. In all respect, the Random Error strategy
acts as a middle ground between the two other extreme
approaches.
For the second experiment the margin (i.e. the vol-
ume of W) is variable with values between 0.01 and
0.3. We also monitor the total number of internal up-
dates rather than the per cutting plane value for the
three strategies and a regular Perceptron Algorithm 3.
Remind that this value is bounded from Proposition 2.
This bound also holds for the regular Perceptron.
The previously observed behavioral shift across the
three strategies is confirmed by Figure 3. Additionally,
some relative robustness is observed with respect to γ,
especially when the emphasis is put on querying a small
number of cutting planes. It is interesting to note that
the Random Strategy makes nearly as few updates as
Smallest error while still querying a—relatively—low
number of cutting planes. Finally, all three strategies
are making slightly less updates than the regular Per-
ceptron. To conclude, note that the theoretical bound

3More precisely, we use the exact same Perceptron than the
one used for the internal loop but ran on the full dataset

of Proposition 2 is far too big to be plotted on the plot
on the left of Figure 2.

4.2 Active Learning on Real Data

We illustrate our method for active learning on text
classification data. For easy comparison, we fol-
low an experimental procedure similar as the one in
[TK02]. Namely, we use the Reuters-21578 —ModApte
variation— and Newsgroups datasets4. The Reuters
dataset is composed of 8, 293 documents represented
in TF-IDF form for 18, 933 words. The dataset spans
65 topics such as Earn, Coffee or Cocoa and is split in
5, 946 training examples and 2, 347 test examples. On
the other hand, the Newsgroups dataset accounts for
18, 846 documents of 26, 214 features splitted in 20 top-
ics. Half of this dataset is uniformly picked for training
while the rest is kept for testing purposes. On both
datasets we train a “one-versus-all” classifier for each
class. We start by creating a pool of unlabeled training
examples sampled from the training set. Then we run
Algorithm 4. We use two variations of the Query()
function: one based on the Chebyshev center (note
that this is equivalent to the Active-SVM of [TK02]),
and the other based on an approximation of the cen-
ter of gravity from Minka’s Expectation Propagation
method [Min13]. This last approach corresponds to
the Active-BPM algorithm and has, to the best of our
knowledge, never been used before. It is a direct ap-
plication of Active Learning algorithms with Cutting
planes method to the Bayes Point Machine. For both
methods, we use two pools of different sizes (500 and
1, 000 examples). For initialization reasons, each pool
comes with two already labeled vectors.5 All the com-
putations are done with a linear kernel and the pre-
sented results are class-wise accuracy measurements
on the test examples over the 10 most represented
classes. The values reported here are an average of
these measures over 25 runs. We complement these
two datasets with Gunnar Raetsch’s Banana dataset.
The Banana dataset is a widely used bataset of 2-
dimensionnal points split into two classes from which
we extract 400 training and 4900 test examples. Due
to its small size, the whole training set is used for the
pool of unlabeled example. The computations are re-
alized with an RBF kernel of parameter σ = 0.5 and

4Available at http://www.cad.zju.edu.cn/
home/dengcai/Data/TextData.html

5SVM and CC are computed with libSVM:
http://www.csie.ntu.edu.tw/ cjlin/libsvm/. BPM and
CG are computed from Minka’s own implementation of
EP for BPM in matlab: http://research.microsoft.com/en-
us/um/people/minka/papers/ep/bpm/

8

0 6 12

0.3

0.6

0.9

Cutting Plane

Q
u

e
ry

 F
re

q
u

e
n

c
y

Largest Error
Random Error
Smallest Error

0 8 16

100

200

CP iterations

#
 i
n

te
rn

a
l
u

p
d

a
te

s

Largest Error
Random Error
Smallest Error

Figure 2: Left : for each value i the bar represents the empirical probability (over 1, 000 runs) to query at least i cutting
planes. Right : each bar represents the number of internal Perceptron updates computed after each Cutting Plane loop.

0 0.1 0.2 0.3

5

10

Margins

#
 C

P

Largest Error
Random Error
Smallest Error

0 0.1 0.2 0.3

300

600

900

Margins

#
 C

P

Largest Error
Random Error
Smallest Error
Perceptron

Figure 3: Left : The average number of cutting planes used for each strategy with respect to the value of γ. Right : the
total number of internal updates with respect to γ. The fourth plot corresponds to a regular Perceptron

presented results are averaged over 50 runs.

Figure 4 graphically depicts the behavior of the so-
called Active-SVM [TK02] and the Active-BPM al-
gorithms on each dataset. Namely, in both algo-
rithms, the queries are selected according to their dis-
tance to the “centroid” of C, which, in turn, serves
as classifier. The difference between these two algo-
rithms lies in that Active-SVM uses the Chebyshev
center and Active-BPM the center of gravity for cen-
troid. In Figure 4, data are represented by circles of
squares whether they correspond to results achieved
by Active-SVM or Active-BPM. Additionally, for the
Reuters and Newgroups datasets, dashed plots corre-
spond to the pool of 500 examples while dotted plots re-
late to the pool of 1000 examples. The error bounds on
the third plot (Banana) correspond to the usual stan-
dard deviation. Each plot represents the accuracy of
those algorithms with respect to the number of queries
made. We can see that Active-BPM systematically out-
performs Active-SVM and increases its accuracy faster
for all datasets, already attaining an accuracy of 0.9

after roughly 10 queries for both Reuters and News-
groups datasets. Both algorithm seem to stabilize af-
ter 30 queries, with the Active-BPM being slightly more
accurate than its SVM counterpart. For the Banana
dataset, the accuracy increase in the first queries is a lot
smoother, with an accuracy for Active-BPM of roughly
0.8 after 20 queries. Both algorithms seem to have con-
verged after 60 queries. Comparatively, not only does
Active-BPM clearly dominate its SVM counterpart but
it is also more stable as evidenced by the error bars
which become negligible past the 60th query.

5 Conclusion and Future Direc-
tions

In this paper, we have shown that deep connections
exist between Localization methods and Learning algo-
rithms. Both fields have extensively characterized and
studied similar concepts over the past years, sometime
independently. On the other hand, complementary re-

9

25
0.6

0.8

1

Number of queries

A
c
c
u

ra
c
y

Active SVM, 500 Points
Active SVM, 1000 Points
Active BPM, 500 Points
Active BPM, 1000 Points

25
0.6

0.8

1

Number of queries

A
c
c
u

ra
c
y

Active SVM, 500 Points
Active SVM, 1000 Points
Active BPM, 500 Points
Active BPM, 1000 Points

25 50 75 100
0.4

0.6

0.8

Number of queries

A
c
c
u

ra
c
y

Active SVM
Active BPM

Figure 4: Accuracy on the Reuters (left) and Newsgroups (middle) datasets for Active-SVM and Active-BPM for pools
of 500 and 1000 examples. Left: accuracy with error bars on the Banana dataset (Gunnar Raetsch) for Active-SVM and
Active-BPM.

sults have been found in each community. A notable
example is the absence of a kernel approach in the Cut-
ting Planes literature while center of gravity methods
were mostly unknown in machine learning until Her-
brich’s BPM [RHC01]. We may also mention that the
Cutting planes’ equivalent of the famous SVM [Vap95]
appears as soon as the 70’s in [EM75]. This work is a
testimony on how it is possible to derive new learning
algorithms, both efficient and theoretically funded, by
reformulating Cutting Planes approach for the learning
paradigm. Besides the cutting plane-related flavor of
the present work, it should be restated that Theorem 2
has a value that goes beyond the scope of this paper.
A field that may be impacted by this result is obvi-
ously that of computational geometry where most of
the results about the computation of centers of grav-
ity come from; nonetheless, it should be noted that
more closely related works could also benefit from our
result. For instance, if we consider the active learn-
ing methods whose query steps rely on explicit explo-
ration of all the possible query/label combinations (see,
e.g. [RM01]), then Theorem 2 provides a tool to devise
natural and theoretically sound heuristics to effectively
locate the most informative query points, or, in other
words, those that may lead to the smallest expected
error.
Among all the possible extensions of this work, one we
are particularly interested in is to study how these re-
sults may carry over to the multiclass setting and pro-
vide proper multiclass active algorithms based on, for
example, Crammer’s Ultraconservative Additive Algo-
rithms [CS03].

References

[BBZ07] M. F. Balcan, A. Broder, and T. Zhang. Margin
based active learning. In COLT, 2007.

[Blo62] H. Block. The perceptron: a model for brain
functioning. Reviews of Modern Physics, 1962.

[BV04] S. P. Boyd and L. Vandenberghe. Convex opti-
mization. 2004.

[BV08] S. Boyd and L. Vandenberghe. Localization and
cutting-plane methods. 2008.

[CDK+06] K. Crammer, O. Dekel, J. Keshet, S. Shalev-
Shwartz, and Y. Singer. Online passive-
aggressive algorithms. JMLR, 2006.

[CS03] K. Crammer and Y. Singer. Ultraconserva-
tive online algorithms for multiclass problems.
JMLR, 2003.

[DSP10] F. Dabbene, P. S. Shcherbakov, and B. T.
Polyak. A randomized cutting plane method
with probabilistic geometric convergence. SIAM
Journal on Optimization, 2010.

[EM75] J. Elzinga and T. G. Moore. A central cutting
plane algorithm for the convex programming
problem. Mathematical Programming, 1975.

[FS99] Y. Freund and R. E. Schapire. Large margin
classification using the perceptron algorithm.
Machine learning, 1999.

[FS09] V. Franc and S. Sonnenburg. Optimized cut-
ting plane algorithm for large-scale risk mini-
mization. JMLR, 2009.

[FW95] S. Floyd and M.K. Warmuth. Sample compres-
sion, learnability, and the vapnik-chervonenkis
dimension. Machine Learning, 1995.

[GHST05] T. Graepel, R. Herbrich, and J. Shawe-Taylor.
PAC-Bayesian Compression Bounds on the Pre-
diction Error of Learning Algorithms for Clas-
sification. Machine Learning, 2005.

[GK10] D. Golovin and A. Krause. Adaptive submod-
ularity: A new approach to active learning and
stochastic optimization. CoRR, 2010.

[Gof80] J.-L. Goffin. The relaxation method for solv-
ing systems of linear inequalities. Mathematical
Operations Research, 1980.

10

[Gru60] B. Grunbaum. Partitions of mass-distributions
and of convex bodies by hyperplanes. Pacific
Journal of Mathematics, 1960.

[GSSS13] A. Gonen, S. Sabato, and S. Shalev-Shwartz.
Efficient active learning of halfspaces: an ag-
gressive approach. JMLR, 2013.

[JFY09] T. Joachims, T. Finley, and C.-N. Yu. Cutting-
plane training of structural svms. Machine
Learning, 2009.

[Kel60] J. E. Kelley. The cutting plane method for solv-
ing convex programs. SIAM, 1960.

[KN12] R. Kannan and H. Narayanan. Random
walks on polytopes and an affine interior point
method for linear programming. Mathematics
of Operations Research, 2012.

[Lev65] A. Levin. On an algorithm for the minimiza-
tion of convex functions. Soviet Math. Doklady,
1965.

[LG94] David D Lewis and William A Gale. A se-
quential algorithm for training text classifiers.
In Proceedings of the 17th annual international
ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 3–12.
Springer-Verlag New York, Inc., 1994.

[LV06] L. Lovász and S. Vempala. Hit-and-run from a
corner. SIAM Journal on Computing, 2006.

[LZH+02] Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-
Taylor, and J. Kandola. The perceptron algo-
rithm with uneven margins. 2002.

[Min13] T. P. Minka. Expectation propagation for ap-
proximate bayesian inference. CoRR, 2013.

[MS54] T. S. Motzkin and I. J. Schoenberg. The relax-
ation method for linear inequalities. Canadian
Journal of Mathematics, 1954.

[Nes95] Y. Nesterov. Cutting plane algorithms from an-
alytic centers: efficiency estimates. Mathemati-
cal Programming, 1995.

[New65] D. J. Newman. Location of the maximum on
unimodal surfaces. J. ACM, 1965.

[Nov62] A.B.J. Novikoff. On convergence proofs on per-
ceptrons. In Proceedings of the Symposium on
the Mathematical Theory of Automata, 1962.

[RHC01] T. Graepel R. Herbrich and C. Campbell. Bayes
point machines. JMLR, 2001.

[RM01] Nicholas Roy and Andrew McCallum. Toward
optimal active learning through sampling esti-
mation of error reduction. In ICML, pages 441–
448. Morgan Kaufmann Publishers Inc., 2001.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic
model for information storage and organization
in the brain. Psychological Review, 1958.

[Ruj97] P. Ruján. Playing billiards in version space.
Neural Computation, 1997.

[Set12] B. Settles. Active learning. In Synthesis Lec-
tures on Artificial Intelligence and Machine
Learning, 2012.

[TK02] S. Tong and D. Koller. Svm active learning with
applications to text classification. JMLR, 2002.

[TSCD11] K. Trapeznikov, V. Saligrama, D. A. Castañon,
and A. David. Active boosted learning (act-
boost). In AISTATS, 2011.

[TVSL10] C. H. Teo, S. V. N. Vishwanathan, A. J. Smola,
and Q. V. Le. Bundle methods for regularized
risk minimization. JMLR, 2010.

[Vap95] V. N. Vapnik. The Nature of Statistical Learn-
ing Theory. 1995.

11

	Introduction
	Related Works
	Outline

	Background
	Vanilla Localization Algorithm with Cutting Planes
	Cutting Planes to Localize a Point in the Version Space
	Query Point Generation

	Results
	Cutting Planes Provide Sample Compression Schemes
	Perceptron-based Localization Algorithm
	Center of Gravity and Approximations
	Active Learning with Cutting Planes

	Numerical Simulations
	Synthetic Data and Perceptron-based Localization Algorithm
	Active Learning on Real Data

	Conclusion and Future Directions

