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Abstract
We address the problem of learning over multiple inter-
dependent temporal sequences where dependencies are
modeled by a graph. We propose a model that is able
to simultaneously fill in missing values and predict future
ones. This approach is based on representation learning
techniques, where temporal data are represented in a latent
vector space so as to capture the dynamicity of the process
and also the relations between the different sources. Infor-
mation completion (missing values) and prediction are then
performed on this latent representation. In particular, the
model allows us to perform both tasks using a unique for-
malism, whereas most often they are addressed separately
using different methods. Moreover, the models allows us
to deal with heterogeneous information (labels and real val-
ues) at the same time. The model has been tested for a con-
crete application: car-traffic forecasting where each time
series characterizes a particular road and where the graph
structure corresponds to the road map of the city. We com-
pare our method with different baselines for both comple-
tion and prediction on two large datasets and show the abil-
ity of our technique to jointly solve these problems. Note
that the model is general and can be used as well in many
different application fields.

1 Introduction
Temporal data correspond to a wide variety of phenomena
from stock market to internet traffic forecasting. Differ-
ent kind of temporal data can be produced: monovariate
and multivariate time series where the produced values are
real values, but also sequences of labels, events, ... The re-
cent emergence of sensors everywhere - e.g mobile phones
which typically produce temporal sequences of complex
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data (GPS, events, ...) - is an example that illustrates the
need of new machine learning models for temporal data
processing. Indeed, the produced information has particular
characteristics that can’t be handled by classical sequential
and temporal models: they contain multiple missing values,
they are heterogeneous, i.e. one source of information can
produce different types of information, and one has to con-
sider simultaneously multiple sources that can be somehow
related, by spatial proximity for example.

Traffic forecasting over roads networks is a good illustra-
tion of that phenomenon: while traffic was usually moni-
tored by using fixed sensors, one sensor for each road, the
emergence of mobile sensors (i.e. GPS) in cars produces
more complicated series: sensors are moving, measuring
different roads at different time-steps. During a time period,
some roads are monitored while others are not, resulting in
series with many missing values - see Figure 1 and Figure
2.

On one side, several models have been proposed for
multivariate time-series or sequences prediction. The most
popular are probably neural networks [1] - an overview
of related methods is given in Section 5. However, these
models have not been conceived for dealing with missing
data. On the other side, some models have been also pro-
posed with the goal of automatically completing missing
information (data imputation) [2], like matrix factorization
techniques which have been used recently in the context
of traffic forecasting [3] [4]. But data imputation and
data prediction are usually seen as two different problems.
Moreover, acquired sequences are usually heterogeneous, a
sensor being able to produce different types of information,
and also inter-dependent, two time series can be related to
each other. There exist no model able to deal with all these
characteristics and tasks conjointly.

We propose a novel method that aims at integrating all
the aspects of complex temporal data in one single model.
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The proposed approach is based on representation learning
techniques aiming at projecting the observations in a con-
tinuous latent space, each sequence being modeled at each
time-step by a point in this space. It has many advantages
w.r.t existing techniques: (i) it is able to simultaneously
learn how to fill missing values and to predict the future of
the observed temporal data, avoiding to use two different
models, (ii) it naturally allows one to deal with information
sources that are organized among a graph structure (iii) it
is also able to deal with heterogeneous information when
sequences are composed of different types of information.
Moreover, the model is based on continuous optimization
schemes, allowing a fast optimization over large scale
datasets.

The contributions of the paper are:

1. We propose a representation learning model for rela-
tional temporal data.

2. We show how this model can solve two different key
problems conjointly: prediction and missing values
completion.

3. We propose an extension of this model where each se-
quences is composed of different types of information
(real values and labels in our case).

4. We make a large experiment set in the context of traf-
fic prediction and compare our approach to baseline
models in both prediction and completion.

This paper is organized as follow: Section 2 gives an
overview of the context of the work and the definition of
the two tasks. The section 3 describes the representation-
learning models and gives details about the learning and
inference algorithms. Section 4 defines the experimental
protocol and presents the experimental results. Section 5
introduces a possible extension of our model. At last Sec-
tion 6 describes the related work and Section 7 concludes
our article and provides interesting perspectives.

2 Context

2.1 Notations and Tasks
Let us consider a set of n temporal sequences x1, ..xn such
that x(t)i ∈ X is the value of the i-th sequence1 at time t
defined by xi = (x

(1)
i , .., x

(T )
i ) . In the case where X is

1We first present an homogeneous version of the model: the value of
each sequence at each timestep is a single value in X . We introduce an
heterogeneous variant in Section 5 where x

(t)
i is composed of different

types of informations.

Rm, the context corresponds to multiple multivariate time
series, but our approach can also deal with sequences of la-
bels for example. The sequences contain missing values so
we also define a mask m(t)

i such that m(t)
i = 1 if value x(t)i

is observed - and thus available for training the system - and
m

(t)
i = 0 if x(t)i is missing - and thus has to be predicted by

the model. In addition, we consider that there exists a set of
relations between the sequences which correspond to an ex-
ternal information, like spatial proximity for example when
X is discrete. The sequences are thus organized in a graph
G = {ei,j} such that ei,j = 1 means that xi and xj are
related, and ei,j = 0 elsewhere. For sake of simplicity, we
consider that the graph structure connecting the sequences
is static and does not change during time.

The two tasks that we want to (conjointly) solve - see
Figure 3- are the following: (i) The problem of prediction
consists in predicting what happens next given the observed
temporal data. (ii) Data completion consists in missing val-
ues inference in the sequences based on the observed val-
ues. Let us denote y(t)i the value of sequence i at time t
predicted by the learned model, the two proposed tasks can
be defined as follows:

Prediction aims at predicting the values at time T + t′

where T is the time of the observed sequences used
for learning the model and t′ the horizon. The quality
of the prediction can be measured as the average loss
between predicted values and groundthruth:

Ppred(t′) =
1

n

n∑
i=1

∆(y
(T+t′)
i , x

(T+t′)
i )

where ∆ is a prediction error measure defined such
that: ∆ : X × X → R+. (the mean square error for
example).

Completion aims at filling missing values (where m(t)
i =

0) by predicted ones in the observed sequences. It can
be measured by

Pcomp =
1

n.T

t=T∑
t=1

n∑
i=1

(1−m(t)
i )∆(y

(t)
i , x

(t)
i )

Note that, in the experimental part, these measures will be
evaluated on a set of testing values in order to compare the
quality of different approaches - see Section 4.

2.2 Main Idea
The goal of our model is to take into account the different
types of information available in the dataset which are: (i)
the observed values, (ii) the relations between the infor-
mation sources and (iii) the dynamicity of the system. We
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Figure 1: A part of a road network where roads are
highlighted in red when traffic information is available
during a time-step and in green otherwise. Sensors are
moving and at each time-step these roads may change,
which may results in highly sparse data.

Figure 2: A part of the network: each row corre-
spond to a road and each column is a time-step. Val-
ues represent the average speed on a given road dur-
ing a time-step. Missing data are on red squares
and correspond to roads crossed by no sensors (i.e.
GPS).

propose to capture this information in a large dimensional
latent space Z in which each observation will correspond
to a particular point (or representation) at each time step,
denoted z(t)i ∈ Z . Facing n information sources during a
duration of T , the model will thus learn T ×n data points in
Z , each information source xi being described by a learned
trajectory (z

(1)
i , ..., z

(T )
i ) in the latent space. This kind of

approach has already been proposed for capturing complex
information like in [5] for information diffusion, [6] for
relational data or even [7] for Markov decision processes,
but never explored for relational temporal data.

In order to capture all the observed information, the
way the latent representations will be built will correspond
to the following constraints:

No Information Loss: First, each representation of each
series at each time-step z(t)i must allow one to predict
the value x(t)i of the series. This property corresponds
to the fact, that, from the learned representations, one
will be able to build observations, and thus to fill miss-
ing values or to predict.

Dynamicity: Second, we want to capture the dynamicity
of source xi. This particularly will be used when pre-
dicting the future behavior of each series. This will be
done by enriching each latent point z(t)i with a dynam-
ical information.

Correlation between sources: At last, in order to inte-
grate the relational information between sequences, we
will consider that two related information sources tend
to behave similarly, and thus the trajectory (in the la-
tent space) of two connected sequences must be close.

Following these constraints, we describe how these rep-
resentations can be learned from observations in the next

section. Note, that, in comparison to classical inductive ap-
proaches (like neural networks for example) where high-
level features are computed from the observations, our
method is a transductive model where representations z(t)i
are parameters of the model from which observations can
be build. The proposed model thus acts more as a genera-
tive model than as a discriminant one which is meaningful
since it aims at being able to predict (i.e. generate) missing
values and also to simulate the future of the sequences.

3 Representation-baSed temporal re-
lational model

3.1 Loss-based approach

We now present how the constraints presented above can
be integrated in a single model. The RepresentAtIoN-
baSed TempOral Relational Model (RAINSTORM) is a
loss-based model which is described through a continu-
ous derivable loss function that will be optimized using
classical optimization techniques. The approach proposed
is close to the ones of the deep learning community but
the proposed model is different from classical deep neural
networks techniques since an explicit representation z

(t)
i

is learned for each time-step and each source as done
in [7]. The main interest of this approach is to be able to
deal easily with missing values while classical NN-based
techniques are less suitable for this case.

Let us define L(θ, γ, z) the loss function to minimize
where z is the set of all the vectors z(t)i for i ∈ [1..n] and
t ∈ [1..T ], T being the size of the observed time windows
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i.e. the history of the time series. We define L as:

L(θ, γ, z) =
1

O

n∑
i=1

T∑
t=1

m
(t)
i ∆(fθ(z

(t)
i ), x

(t)
i ) (term 1)

+ λdyn

n∑
i=1

T−1∑
t=1

||z(t+1)
i − hγ(z

(t)
i )||2 (term 2)

+ λstruct
∑

i,j∈[1..N ]2

T∑
t=1

ei,j ||z(t)i − z
(t)
j ||

2 (term 3)

(1)
where O is the number of observed values i.e. values such
that m(t)

i = 1.
This loss function contains three terms, each one asso-

ciated with one of the constraints that have been presented
previously:

• Term 1 aims at simultaneously learn z and a function
fθ - called decoding function - such that, from z

(t)
i ,

fθ can be used to predict the value x(t)i . The function
fθ(z

(t)
i ) is defined as fθ : RN → X . ∆ is used to

measure the error between predicting fθ(z
(t)
i ) instead

of x(t)i , m(t)
i playing the role of a mask restricting to

compute this function only on the observed values, ig-
noring the missing values that are unknown and cannot
be used in training.

• Term 2 aims at finding values z(.)i and a dynamic
model hγ such that, when applied to z(t)i , hγ allows us
to predict the representation of the next state of time
series i i.e. z(t+1)

i . hγ is the dynamic function which
models the dynamicity of each series directly in the la-
tent space: hγ : RN → RN . The parameters γ will
be learned to minimize the mean square error between
the prediction hγ(z

(t)
i ) and z(t+1)

i ensuring that hγ is
a good dynamic model of the series in RN

• At last, term 3 corresponds to a structural regular-
ity over the graph structure that encourages the model
to learn closer representations for time series that are
related. This will force the model to learn representa-
tions that reflect the structure of the considered graph.

λdyn and λstruct are manually defined coefficients that
weight the importance of the different elements in the loss
function. For fθ and hγ , different architectures can be cho-
sen (they must be continuous and derivable) and we propose
distinct architectures in the experimental section. These
meta-parameters are chosen using classical validation tech-
niques.

3.2 Learning Problem

The learning problem aims at minimizing the loss function
L(θ, γ, z) simultaneously on θ, γ and z. By restricting
the fθ and hγ to be continuous derivable functions, we
can use gradient-descent based optimization approaches.
The loss function is clearly not convex but such techniques
will allow us to efficiently find a local minimum to this
problem. The optimization of complex non-convex losses
recently allowed to obtain very interesting results in many
different applications (i.e. deep learning techniques) and
we consider that since such a model is able to handle
complex constraints, even stuck in a local minimum, it can
produce nice predictions - see Section 4.

Different gradient-based approaches can be used: batch
minimization, alternated gradient-decent, ... We propose
to use a classical stochastic gradient method described in
Algorithm 1. The algorithm takes as input the observed
sequences, the mask over the sequences, randomly initial-
ized decoding and dynamic functions, and a representation
for each sequence for every time step (line 2-6). Then,
iteratively, it modifies the parameters of the decoding
function (line 12) and the corresponding representations
(line 11) toward the direction of their gradient. This
corresponds to the term 1 in equation (1). Parameters of
the dynamic function and the concerned representations
are modified the same way (line 15-17). The model also
updates its parameters corresponding to the structural
regularity (line 19-20). The algorithm produces as output
both a set of latent points z but also the decoding and
dynamic functions fθ and hγ . All this information will be
then used for prediction and completion as explained in
Section 3.3. The expression power of the model is mainly
controlled by the size of the latent space N which will be
chosen using classical validation techniques.

3.3 Inference

Now, we consider that, given a set of observed values, z, fθ
and hγ have been learned. Let us explain how this model
can be concretely use.

3.3.1 Completion of missing values:

For all missing values x(t)i such thatm(t)
i = 0, the proposed

learning algorithm has learned a z-value z(t)i in the latent
space. This learned value has been mainly ’chosen’ based
on term 2 and 3 of the loss function (Equation 1) while
the decoding term has not been tuned on z(t)i since x(t)i is
unknown. In order to predict this missing value, our ap-
proach simply computes the value fθ(z

(t)
i ) which produces

a plausible output value. Note that, when choosing a lin-
ear decoding function, the predicted value is θT z(t)i which
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Algorithm 1 Stochastic Gradient Descent Algorithm
1: input:
2: ∀i, t, x(t)i ∈ X
3: ∀i, t,m(t)

i

4: ε← learning rate
5: procedure Learning(θ, γ, z)
6: ∀i, t, z(t)i ← rand, γ ← rand, θ ← rand
7: for number of iteration do
8: Sample i, t, j
9: %Gradient descent for term (1)

10: if m(t)
i == 1 then

11: z
(t)
i ← z

(t)
i + ε∇

z
(t)
i

∆(fθ(z
(t)
i ), x

(t)
i )

12: θ ← θ + ε∇θ∆(fθ(z
(t)
i ), x

(t)
i )

13: end if
14: end
15: %Gradient descent for term (2)
16: z

(t)
i ← z

(t)
i + ελdyn∇z(t)i

∆(hγ(z
(t)
i ), z

(t+1)
i )

17: z
(t+1)
i ← z

(t+1)
i + ελdyn∇z(t+1)

i
∆(hγ(z

(t)
i ), z

(t+1)
i )

18: γ ← γ + ελdyn∇γ∆(hγ(z
(t)
i ), z

(t+1)
i )

19: %Gradient descent for term (3)
20: z

(t)
i ← z

(t)
i + ελstruct∇z(t)i

||z(t)i − z
(t)
j ||2ei,j

21: z
(t)
j ← z

(t)
j + ελstruct∇z(t)j

||z(t)i − z
(t)
j ||2ei,j

22: end
23: end for
24: end procedure

is very close to the classical completion value computed
through matrix factorization techniques, but θ and z have
been learned based on multiple information (in particular
the relational information into the graph).

3.3.2 Predicting the future:

Now, we explain how the model can be used to predict fu-
ture values x(t)i . For all t > T , the model does not compute
z-values and these z(t)i are unknown. But our model learns
a dynamic function hγ which goal is to allow the prediction
of z(t+1)

i given z(t)i . So, for any i, z(T+1)
i can be computed

by hγ(z
(T )
i ), z(T+2)

i can be computed by hγ(hγ(z
(T )
i )) and

so on. hγ acts as a simulator of the sequences in the latent
space. The future value x(T+s)

i can thus be predicted by
simply computing fθ(hγ(hγ(hγ(........hγ(z

(T )
i )..))) where

hγ is applied s times, the obtained vector being then trans-
formed to prediction by using fθ.

4 Traffic Forecasting and Experi-
ments

4.1 Traffic Forecasting

We consider a road network as a graph where each node
corresponds to a road, and edges are connections between
roads: two roads are connected if they belong to the same
crossroads. We consider that, at each time-step, some sen-
sors return measures over a subset of roads (i.e. the roads
such that m(t)

i = 1). This measure is typically the average
speed of cars on the road, or a measure of the volume of
cars. Note that the subset of roads from which we obtain
measures at time t can be different of the one at time t + 1
since the sensors are floating sensors moving in the city.
The goal of traffic forecasting is first to fill missing values
i.e. values on roads that have not been directly measured
at time t and also to predict what will happen on the dif-
ferent roads for the next time-steps. In traffic forecasting,
the time-step typically corresponds to some minutes (e.g.
15 minutes) and the prediction has to be made for the next
hours.

4.2 Datasets

Experiences have been made on two datasets. Collected
data consist of GPS trajectories of a large amount of vehi-
cles in the cities of Beijing and Warsaw which are converted
to relational time series through the following preprocess-
ing steps: (i) trajectories are map-matched (in a similar way
to what is done in [8]). (ii) Based on this matching, the
speed and volume of cars are computed for each road at
each timestep. (iii) The graph between series is built by
connecting roads that share a same crossroads. Statistical
details concerning the two datasets are given in Table 4.
Beijing dataset: the dataset is provided by [9] and con-
sists on trajectories of about 10500 taxis during a week, for
a total of 17 millions of points. We keep traffic-volume and
aggregate it on 15min windows. Warsaw dataset: The
data were presented in 2010 in the context of the ICDM
data mining challenge [10]. The contest’s subject was traf-
fic prediction and data were generated by a simulator in the
city of Warsaw (Poland). 500 simulations of 10 hours each
were provided with a very high sampling rate (one point
every 10s), for a total of around 130 million of points. We
aggregate data on ∼20 000 roads on a 10 minutes window
and we compute average speed velocity for each road dur-
ing this time-step.
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Figure 3: The tasks we want to achieve consist in data
completion from T1 to T6 and prediction from T7 to
T10. Blue squares are values such that m(t)

i = 1

Figure 4: Boxes with a blue background are training
data, those with a green background are used as vali-
dation and the red ones correspond to the test set.

Table 1: Statistics on the two Datasets: Volume is derivated
of the presence of a vehicle on a road on given times-step.
Speed information is only present for the Warsaw dataset.
The sparsness is the percentage of missing data i.e. the per-
centage of roads at certain timesteps crossed by no cars.

Datasets Beijing Warsaw
Volume Yes Yes
Speed No Yes
Nb of roads/sequences 24 000 20 000
Size of time-step t 15 min 10 min
Nb of time-steps 672 100
Sparsness 69% 81%

4.3 Learning and Testing Protocol

In order to evaluate our method, we consider a set of
training values and a set of testing values. Testing values
are of two types: part of the testing values are sampled uni-
formly in the set of observed values for t ∈ [1..T ], T being
the size of the observed data. These testing values will be
used for evaluating the quality of the completion model.All
values for t > T are considered as testing values and will
be used for evaluating our model in prediction. Moreover,
a sub-part of the testing values will be used as validation
data for tuning the hyperparameters and also the best ar-
chitectures for fθ and hγ . The train/validation/test protocol
is illustrated in Figure 4. Note that, from each dataset, we
have extracted multiple problems of size T by using slid-
ing windows over the collected data. The window size is
96 time-steps for the Beijing dataset and 40 time-steps for

Warsaw.
4.4 Models
We propose to compare the RAINSTORM approach to the
following baseline models, some baselines being used for
data completion, and some others for prediction.

4.4.1 Completion

• RecentObs: This heuristic fills a missing value in a
sequence by the most recent observation present in the
sequence such as x(t)i ← x

(t−1)
i if mt−1

i = 1 , or
x
(t)
i ← x

(t−2)
i if mt−1

i = 0 and so on.

• MF: This correspond to the classical matrix factoriza-
tion framework, described for instance for the task of
traffic forecasting in [11].

• MF-with geographic context: This method is the one
named TSE (traffic speed estimation) in [11]. It con-
sists on minimizing a reconstruction cost on a traffic
matrix for which external information such as geo-
graphic position in a city is incorporated.

4.4.2 Prediction

• Last-Point: This naive baseline assumes that the traf-
fic at t + 1 will be the same that traffic at t such as
x
(t)
i ← x

(t−1)
i .

• NeuralNetwork: This is the classical baseline method
used in traffic forecasting based on a neural network
architecture, described for instance in [12].

• SAE: This is the method described in [13] ; it consists
on a deep architecture of stacked auto-encoders trained
on the traffic history.
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We also compare RAINSTORM with a model based on a
heuristic able to perform both completion and prediction
that we call RoadMean and can be described as follow:
this model predicts and fills missing value with the mean of
observed values on the sequence.
The RAINSTORM model has been configured as follows:
(i) fθ is a linear function (ii) three different architectures for
hγ have been tested:

• RAINSTORM-lin uses a linear hγ function

• RAINSTORM-trans uses a hγ such that hγ(z) = z+
γ. It involves less parameters that the previous model.

• RAINSTORM-mlp uses a one hidden layer neural
network for hγ with 200 hidden neurons and a hyper-
bolic tangent as activation function. It allows to model
more complex behaviors.

4.5 Experiments and Results
4.5.1 Data Completion

For the first set of experiments, we focus on filling miss-
ing values in the two datasets. We have used 50% of the
observations for training, 40% for testing and 10% for vali-
dation. Each performance has been computed by averaging
the results obtained on 20 different runs. In that case, the
∆ function is the classical RMSE. Table 3 illustrates the re-
sults obtained by the baselines and by our models, consid-
ering different sizesN of the latent space. First, one can see
that the three RAINSTORM models outperforms the base-
lines for almost all the tested dimensions N . Particularly,
on the Beijing dataset, the RAINSTORM mlp model with
N = 50 obtains a RMSE of 2.97 while the best baseline
(SAE) only obtains 3.24. This corresponds to a ∼ 10% im-
provement of the performance. This is due to the ability of
the model to both capture the dynamics of the sequences,
but also to benefit from the relational information.

4.5.2 Prediction

For the second set of experiments, we focus on the predic-
tion problem. Here, the values at time t > T are removed
from the training set; 20% of the removed values are used
as validation set and the 80% remaining are the test set. Ta-
ble 2 shows the performance of the different models for the
prediction task using a RMSE evaluation at t = T + 1 on
the volume or average speed of the cars on each road. It
also shows that, used as a prediction model, RAINSTORM
obtains higher results than baseline techniques for the two
cities. When considering long-term prediction quality (Fig-
ure 5), our model is still able to well predict from approx-
imately T + 1 to T + 7 but fails in predicting long term

values since the hγ function is not a perfect model of the
dynamicity.

4.5.3 Making Prediction and Completion simultane-
ously

In the third set of experiments, we evaluate our model for
both completion and prediction. It means that the training
set is built by removing observations both for t ≤ T , and
also all the values at time t > T that will be used for eval-
uating the prediction quality. We compare the performance
in completion and prediction to baselines model. Note that,
in the pure prediction task, the baselines are learned with-
out considering missing values in the training set for t ≤ T
since these models are not able to deal with missing values.
Table 4 presents the obtained performance. It shows that,
if the prediction quality of our model has decreased with
comparison to results obtained on the pure prediction task
(Table 2), both the performance in completion and predic-
tion remains higher than the performance of baseline mod-
els. The prediction decrease is due to the fact that now, our
prediction model is trained with missing values for t ≤ T .

5 Heterogeneous information
Now, we consider a novel experimental problem where, at
each timestep, the observation x(t)i is composed of both a
label denoted x(t)i,lab and a real value x(t)i,real. Note that we
present the heterogeneous model in this case, but more com-
plex data can be handled and the model is not limited to
dealing with just one real value and one label. x(t)i,real cor-

responds to the value used previously, and x
(t)
i,lab is a la-

bel (in a set of three possible labels) that can be high con-
gestion,medium congestion and low congestion. We extend
our model by considering two different decoding functions
fθ,real which aims at predicting x

(t)
i,real and fθ,lab which

predict one label between the three possible ones. These
two decoding functions are naturally integrated in the loss
of our model by using the following loss:

L(θ, γ, z) =

1

O

n∑
i=1

T∑
t=1

[m
(t)
i,real(fθ,real(z

(t)
i )− x(t)i,real)

2

+m
(t)
i,lab∆hinge(fθ,lab(z

(t)
i ), x

(t)
i,lab)]

+ λdyn

n∑
i=1

T−1∑
t=1

||z(t+1)
i − hγ(z

(t)
i )||2

+ λstruct
∑

i,j∈[1..N ]2

T∑
t=1

ei,j ||z(t)i − z
(t)
j ||

2

(2)
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Table 2: Prediction at T + 1, comparison between de-
scribed baselines models and the RAINSTORM model
for different size of latent space N with a root mean
square error (RMSE)

N Model/Dataset Beijing Warsaw
Volume Volume Speed

RoadMean 5.51 5.09 11.02
Last-Point 5.28 4.73 12.01

NeuralNetwork 4.77 4.27 8.05
SAE 4.75 4.27 7.85

RAINSTORM

5
Linear 5.07 4.28 7.48

Translation 4.89 4.32 7.72
MLP 4.82 4.28 7.74

10
Linear 4.91 4.25 7.40

Translation 4.85 4.29 8.00
MLP 4.78 4.20 7.21

20
Linear 4.72 4.24 7.33

Translation 4.67 4.22 7.54
MLP 4.54 4.21 7.19

50
Linear 4.73 4.27 7.22

Translation 4.68 4.39 7.45
MLP 4.66 4.20 7.60

Table 3: Completion for 50% missing data, com-
parison between described baselines models and the
RAINSTORM model for different sizes N of the la-
tent space with a root mean square error (RMSE)

N Model/Dataset Beijing Warsaw
Volume Volume Speed

RoadMean 5.55 5.00 11.10
RecentObs 5.31 5.11 11.38

MF 3.58 3.16 6.80
MF-Geo 3.24 2.99 6.49

RAINSTORM

5
Linear 3.37 3.13 6.41

Translation 3.19 3.12 6.32
MLP 2.99 3.12 6.49

10
Linear 3.01 3.09 6.40

Translation 3.05 3.17 6.51
MLP 3.03 3.00 6.24

20
Linear 3.52 2.97 6.47

Translation 3.21 2.92 6.45
MLP 3.22 2.94 6.23

50
Linear 3.53 2.99 6.32

Translation 3.08 2.95 6.35
MLP 2.97 2.93 6.70

Figure 5: Evolution of RMSE when predicting future time-
steps, from T + 1 to T + 11 on the Beijing dataset.

Note that, in our experiment, the ”real” values and the ”lab”
values are not forced to be missing for the same cells and
thus need to define two different masks m(t)

i,real and m(t)
i,lab.

∆hinge is a classification hinge-loss.

5.1 Experimental results

Table 5 shows the results of our approach when consider-
ing only the ’real’ values, only the ’lab’ values, and when
considering the two types of values simultaneously. One

Table 4: Completion and Prediction preofrmance with dif-
ferent levels of missing training values on the Beijing
dataset for RoadMean (RM) model and RAINSTORM-mlp
(RS) (with a latent space of size 20)

Completion Prediction
Percentage
of missing
values

RM RS RM RS

5% 4.88 2.89 5.51 4.63
10% 4.89 2.89 5.55 4.67
20% 5.04 2.91 5.55 4.79
30% 5.11 2.96 5.64 4.91
50% 5.55 3.22 5.65 5.06
75% 5.90 3.78 5.81 5.26

can see that, when considering the two types of information
simultaneously, our model is able to obtain better perfor-
mance both in term of RMSE for the ’real’ values, and in
term of accuracy for the labels, showing that RAINSTORM
can also integrate heterogeneous information and can bene-
fit from it.

8



Table 5: completion for 50% missing data with the hetero-
geneous model on the Beijing dataset. Results are given for
RAINSTORM-mlp: we consider three setups with real val-
ues only, the labels only and an experiment with both types
of values.

x real only x label only both x
Accuracy Rmse Accuracy/Rmse

N=5 0.71 2.99 0.74/3.11
N=10 0.77 3.03 0.77/3.15
N=20 0.79 3.22 0.84/3.24
N=50 0.76 2.97 0.82/3.05
N=60 0.78 2.99 0.81/2.96
N=80 0.77 3.05 0.82/2.98

6 Related Work

The representation learning (and deep learning) is a very
active field where different recent works target some of the
aspects studied here. For example, the problem of learn-
ing representation over sequential data has been used with
different approaches like Recurrent Neural Networks [14].
The main difference w.r.t our model is that the RNN-based
methods are inductive (the representation is induced from
observations) while RAINSTORM is a transductive model
(the observations are induced from learned representations)
which makes it more suitable for the completion problem:
missing values are built from the representations. Some
other methods concerning the problem of dealing with re-
lational data has been also proposed with a close technique
[6]. In the literature, relational data are usually handled by
using semi-supervised models [16] or for graph, transduc-
tive classification methods [17].Our model is also related
to multi-view deep neural networks like [18] . Here also,
our transductive approach is more suitable for data where
some of the views (the different types of observations) are
missing. As far as we know, there is no existing model in
this community that mix relational information, temporal
information and heterogeneity. The problem of prediction
and completion of time series has been the focus on many
different approaches in the signal processing community.
Different models that aims at building representations of se-
ries at each time step have been proposed like slow features
analysis [19]. We do not detail this literature here since our
model is different: it has been developed for dealing with
more complex data - no only time series - like related het-
erogeneous temporal sequences composed of real values,
labels, etc...
At last, the traffic prediction problem is an old topic. In par-
ticular, since the first research work [20], the problem has
been studied from the ”univariate series” point of view and

different techniques have been evaluated like ARIMA (Au-
toregressive Integrated Moving Average) which have been
applied soon after in the context of multivariate time-series
[21]. For a large overview on this techniques in the field
of traffic forecasting, you can refer to [23]. Machine learn-
ing approaches have been studied (SVR, neural networks)
the same way (in univariate and multivariate temporal se-
ries) [24]. In practice, neural networks are predominant and
are at the center of a large number of publications which
propose different architectures [25] [12]. Neural Networks
are also the baseline competitor which is often used [26].
More recently, deep-learning architecture have been also
successfully used in this field [13]. Some models are ded-
icated to data completion [27]. Several approaches have
been proposed to handle this problem: among them, the
family of methods based on matrix factorization has shown
its effectiveness on several occasions recently like in [28].
These methods were derived in the particular context of
traffic forecasting in order to incorporate them external in-
formation such as geographic proximity like in [11].

7 Conclusion and Perspectives
We have presented a new way to learn over incomplete
multiple sources of temporal relational data sources. The
RAINSTORM approach is based on representation learn-
ing techniques and aims at integrating in a latent space the
observed information, the dynamicity of the sequences of
data, and their relations. Moreover, a simple modification
of the model allows one to deal with heterogeneous sources.
In comparison to baselines models that have been developed
for prediction only or completion only, our approach shows
interesting performance and is able to simultaneously com-
plete missing values and predict the future evolution of the
data. This model opens many perspectives: the first one
is to integrate in the model a long-term memory while our
approach (like classical neural networks) is limited to short
time prediction. Indeed, we think that extending the model
to very long temporal sequences is a key issue. Another
perspective would be to conceive a model able to deal with
temporal sources that produce information at different rates:
for example, in the traffic forecasting problem, we want to
propose a model that integrates both temporal information
extracted from sensors, but also temporal information ex-
tracted from Web sources (like Twitter) which is produced
at a lower rate.
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