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Résumé

Many systems rank outcomes before suggesting them
to a user, such as Recommender Systems or Informa-
tion Retrieval Algorithms. These systems require ma-
nual validation, which is time consuming and costly in
industrial context. As it is the case in our industrial
applications, we assume that the user’s needs can be
fulfilled by only one relevant outcome. We thus consi-
der an algorithm that systematically selects the top
ranked outcome. This approach requires to compute a
correctness, estimating the confidence of the automatic
decision, or equivalently how likely the first outcome of
the ranking system is to be correct. Based on this es-
timation, we can apply a threshold on the correctness,
above which no manual action is required ; the system
avoids human validation in many cases.

This paper proposes a novel method to estimate
this correctness based on a supervised classification
approach using the manual validations available in
the base coupled with a representation of the sys-
tem’s scores. We conducted experiments on Multipos-
ting real-world datasets generated by algorithms used
in the industry ; the first algorithm categorizes a job
offer, the second recommends semantic equivalents for
a given expression in a nomenclature. Our approach
has thereby been evaluated and compared, and showed
good results on our datasets, even with a limited trai-
ning base. Moreover, in our experiments, for a given
threshold, the better is the correctness estimation, the
more performant is the semi-automatic system, sho-
wing that the correctness estimation leads thus to a
crucial efficiency gain.

Keywords : Recommender Systems, Information Re-
trieval, Recommendation Confidence, Semi-Automatic
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Classification, E-Recruitment.

1 Introduction

Multiposting is the French leader on e-recruitment
solutions. Each year, millions of job offers are posted
on recruitment websites, such as Monster.com, through
Multiposting’s interface. To handle such amount of
data, the company is developing an automatic categori-
zation of job offers on a high resolution nomenclature ;
at the moment, the algorithm suggests categories that
need manual validation. Similarly, to help its clients
in posting their job ads easily, the company needs to
find semantic equivalences between e-recruitment web-
sites nomenclatures. Once these hierarchies are mat-
ched, the client only needs to fill one form instead of do-
zens. The company employees are now matching items
after items the nomenclatures, helped by a recommen-
der system.

Both of these algorithms (categorization and taxo-
nomies matching) rely on textual processing and data
mining techniques, and are now subject to the following
constraints :

- One outcome is required per query, and one is suf-
ficient,

- When taking the top ranked suggestion as answer,
the precision is too low for industrial use,

- Manual validation is systematically required (ran-
ked suggestions displayed).

As the manual validation is time consuming, we
would like to skip this step when possible. This im-
plies to estimate when the top suggestion is reliable,
and when it is not, taking it as the unique answer to
the query only in the first case. As ranking systems
are predicting real-valued scores to rank outcomes, we
propose to consider these scores, coupled with a lear-
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ning base, to estimate when the top ranked outcome is
correct.

The paper is organized as follows : Section 2 surveys
related research, while section 3 describes our problem
and notations. Section 4 proposes variant approaches
to estimate the correctness, including our method ba-
sed on a specific representation of scores. We describe
in section 5 our algorithms deployed in real-world on
which we applied our approach. Section 6 presents tests
and comparisons that show the efficiency of the pre-
sented method, and the industrial impact of our esti-
mation. We finally conclude and discuss the obtained
results in section 7.

2 Related Work

Information Retrieval systems and recommender
systems are generally platforms suggesting outcomes to
a user in response to a query [BOHG13, CDMS08], by
ranking them. For these ranking systems, the computa-
tion focuses on the query (including user’s preferences
for recommendation) to suggest relevant outcomes. Ge-
nerally, and in our experiments, outcomes and queries
features are textual documents. We transform them
using natural language processing (tokenization, stem-
ming) [RL03] and represent as vectors using the vector
space model with TF-IDF as term weighting function
[SWY75].

A problem we tackle is the industrial cost of ma-
nually validating the outcomes suggested by the sys-
tem. By taking the most likely outcome as the result,
our work falls into a classification task. To face the
cost of correct or incorrect classification, cost-sensitive
learning [ZL10, Zho11] proposes to consider this indus-
trial constraint by balancing the classes weights in the
training of the classification algorithm. However, the
method remains limited to classification on given fixed
classes, and requires as an input the cost matrix of our
system.

Our approach to face this industrial cost is to es-
timate the confidence of our automatic decision. An
important question we address in this paper is how to
estimate the confidence of the most likely result of a
ranking system. Many research has been done on esti-
mating a probability from raw algorithms output, such
as in [Pla99] where the system is a single class SVM
outputing an unbounded distance to the separating hy-
perplane. [TFWW04, ZE02] propose approaches for es-
timating probabilities from any multi-class classifier ;
this topic still remains an area of interest in the litera-
ture [NF14, JK14]. However, these studies only apply

on classification on fixed classes, and need a large trai-
ning set, including positive cases for every class.

Our work is also an approach for evaluating recom-
mender systems. Indeed, we do not only evaluate the
overall accuracy and coverage of our ranking system,
but also derive metrics that indicate the confidence
one can have in individual recommendations. In this
sense we go further than existing evaluation approaches
[BOHG13], while recent works suggest the importance
of other metrics besides accuracy for evaluating the
usefulness of recommendations [MRK06].

3 The Notion of Correctness for
a Ranking System

3.1 A Ranking System

The general problem is described by a query q and
a set Oq of possible outcomes, a single outcome being
denoted o. One notices that Oq and its size |Oq| gene-
rally depend on the query, but this is not the case for
every ranking system. Ranked outcomes are displayed
to the user, and he can validate or not these outcomes,
depending on the requirements.

We assume that the relevance of each outcome o ∈
Oq with respect to the query q is independent to the
relevance of the other outcomes Oq \{o}. This indepen-
dence assumption usually applies in information retrie-
val [Rob77], but can be found in other algorithms such
as recommender systems.

Outcomes are theoretically ranked with respect to
P(o relevant|q). However, in practice, these probabili-
ties are represented by a function s(q, o) ∈ R, evalua-
ted independently for every outcome o. This scoring
function can be a direct estimation of the probability
P(o relevant|q), but in general it doesn’t have a pro-
babilistic interpretation ; it can indeed be unbounded,
depending on the algorithm. The function s only de-
pends on one outcome o due to the independence as-
sumption. The system then ranks the outcomes with
respect to s(q, o) and display them to the user.

Depending on the system, the set of possible out-
comes Oq can be fixed or not. In Information Retrieval,
for instance, the outcomes are the retrieved documents,
and might change regarding the query, when the user
applies a filter on the documents for instance.

A first simple example for the scoring function s is
the cosine similarity : s(q, o) = cos(~q, ~o), where ~q and
~o are the representations of query q and outcome o,
processed as textual documents to form vectors (see
section 2). Many different algorithms exists for infor-
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mation retrieval, as [SP11]. Content-based recommen-
der systems [BOHG13] are also ranking systems, where
query q includes user’s preferences. Multiclass classi-
fiers based on one versus all approach [RK04] also com-
pute scores, the query being the features vector and the
outcome being the class. For more detailed examples,
we refer to section 5 which describeTwo real-world ran-
king systems are provided in section 5.

To estimate which outcomes are relevant to the user,
we suppose that a base Γ is available :

Γ = {(q,Oq, O
r
q)}

Where Oq is the set of suggested outcomes for query q,
and Or

q ⊂ Oq is the set of relevant outcomes, manually
validated.

Γ gives an idea of the user’s feedback on system sug-
gestions, and thus expresses which outcomes are really
relevant. This base can be used to validate the compu-
tation of local scores s(q, o), using for instance accuracy
evaluation metrics [GDBJ10]. This base can also be
used as to improve the scores computation, by learning
on Γ how to compute s(q, o) in the best way possible.
The validation metrics are then computed through a
cross validation process.

From now on, we assume that the initial system is
fixed, meaning that the computation of the scoring
function s has been fixed, even if the function s it-
self can vary depending on the learning set in the case
of an algorithm learned on Γ.

3.2 Correctness of the Top-Ranked
Outcome

We now focus on the case where the user only needs
one relevant outcome for each query, and systemati-
cally needs it. In other terms, once a relevant outcome
is found, the other ones are useless. Some examples of
such systems are detailed in the section 5. It is natu-
ral to focus on the most likely outcome, as being the
potential unique relevant answer for a given query. We
write o∗ ∈ Oq to denote the top ranked outcome for
query q, that is to say the outcome with the highest
s(q, o) value :

o∗ = argmaxo∈Oqs(q, o)

This leads us to propose a semi-automatic system,
requiring human action only when the system is not
confident enough about the relevancy of its first ranked
suggestion o∗ :

The crucial point of this automatization is to de-
termine how likely is o∗ to be correct. We define the
correctness Cq as the probability that the top ranked
outcome is a correct answer :

Algorithm 1: Semi-automatic System

input: q, Oq

foreach outcome o in Oq do compute s(q, o)
o∗ = argmaxo∈Oqs(q, o)
if o∗ is likely enough to be correct then

return o∗ as a unique final answer
else

ask a manual selection, displaying ranked
outcomes

end

Cq = P (o∗ relevant)

The correctness differs from the score s(q, o∗) re-
presenting P (o∗ relevant) : first, Cq is a probability,
contrary to the scores. Second, scores are computed
with independence assumption, whereas Cq takes into
account that o∗ is the top ranked outcome of the query,
and is implicitely aware of the other outcomes. For ins-
tance, even if all the scores s(q, o) are very low but
s(q, o∗) remains much higher than other scores, it gives
more chance to o∗ to be a correct answer. On the other
hand, if every outcome has a high score, but no out-
come seems to stand out from the others, we are less
confident about o∗ being a correct answer.

Once the system can compute the correctness Cq,
the condition o∗ is likely enough to be correct can be
changed to Cq > t, where the threshold t is choosen
regarding the industrial strategy (see section 6). As
our automation requires to compute the correctness,
our problem is thus to estimate the correctness Cq the
most precisely as possible.

4 Various Approaches for Cor-
rectness Cq Estimation

4.1 Heuristic-Based Approach

A first natural approach is to rely directly on the
scores s(q, o) predicted by the ranking algorithm. As
we consider the case of a unique choice (the choice of
o∗), we want to interpret the scores as the probability
for each outcome to be this unique relevant one. To
interpret s(q, o) as a probability, we process the scores
for a given query q :

s′(q, o) =
s(q, o)− ε∑

o∈Oq (s(q, o)− ε)

Where ε is the lower bound of scores s(q, o). As a lower
bound is not necessarily available, ε can be arbitrarily
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chosen, and cut scores below it. We then have s′(q, o) ∈
[0, 1] ∀ o ∈ Oq and

∑
o∈Oq s

′(q, o) = 1.

We use several metrics that are proposed in [VB12]
to estimate the correctness :

- The Maximum ; we simply consider highest norma-
lized score : Ĉq = maxo∈Oq s

′(q, o) = s′(q, o∗)
- Distance ; we evaluate how much the best out-

come stands out from the second one : Ĉq =
maxo∈Oq s

′(q, o∗)− 2nd maxo∈O s
′(q, o)

These approaches only rely on the s(q, o) with hi-
ghest value for Maximum, and on the two highest ones
for Distance. We note that more values s(q, o) could
be considered. Second, these estimations are static, as
the computation doesn’t rely on the manual valida-
tions Or

q available in the base Γ. The following section
thus proposes to estimate the correctness by learning
an estimator on Γ.

4.2 Learning on Independent Scores

For this section, considering a query q, we focus on
the score s(q, o) for a given outcome o, not taking into
account the scores for other outcomes of Oq. It is mea-
ningful to separate every outcome making use the in-
dependence assumption (see 3.1). We try thereby to
estimate from any value s(q, o) the probability that a
user validates o, that is to say P (o relevant|s(q, o)).
This estimated probability P̂q,o is computed through a
predicting function ψ :

P̂q,o = ψ
(
s(q, o)

)
where the prediction function ψ

(
x ∈ R

)
∈ [0, 1] is

learned on the validation dataset Γ. Compared to mul-
ticlass probability estimation, this prediction is una-
ware of the class of o as there is not necessarily defined
classes for the outcomes, and can thus be applied to
a wider range of systems. The estimation is done in-
dependently for every outcome, making abstraction of
the fact that they are from the same query. In that
case, we express the base as a set of entries (s(q, o), y),
where y = 1 when o is relevant for the query q and
y = 0 otherwise. The number of entries is much higher
than for Γ, as there is one for each pair (q, o).

The estimated correctness of the query Ĉq is compu-
ted as :

Ĉq = P̂q,o∗ = ψ
(
s(q, o∗)

)
(1)

This approach takes advantage of the base Γ, in or-
der to learn when users are satisfied with the best out-
come or not. We note that this estimation might be
useful even when scores s(q, o) are already computed
as probabilities, because the score computation might

be computed of the users’ needs expressed by Γ. Ho-
wever, we note from equation 1 that the estimation of
the correctness Cq only relies on the outcome with the
highest value o∗. We can expect that scores for other
outputs can give additional information on the quality
of our recommendation : indeed, if the second highest
local score s(q, o) is much lower than the highest one,
it means that first outcome stands out of the others.
We thus extend this method by considering all scores
in the next section.

Notations

Symbol Description

q Query

o Outcome

Oq set of possible outcomes for query q

Or
q set of relevant (validated) outcomes, ⊂ Oq

s(q, o) Scoring function, used for ranking

o∗ Top-ranked outcome

Φk(q) Top-k scores vector for query q

Cq Correctness of the query q

Pq,o Probability that o is correct for q

ψ Learned function estimating Pq,o from s(q, o)

ϕ Learned function estimating Cq from Φk(q)

Table 1 – Notations.

4.3 Learning on Top-k Scores

For this part and the following, given a query q, we
focus on all the corresponding scores s(q, o), at the
number of |Oq|. We thereby try to estimate the cor-
rectness from all the scores s(q, o) for o ∈ Oq :

Cq = P(o∗ relevant|s(q, o), o ∈ Oq)

For this approach, we will train a classification algo-
rithm using all scores s(q, o), o ∈ Oq as features. We
notice that a dimension problem arises : the number
of features |Oq| is not fixed for all q. Moreover, even
when this dimension is constant (i.e. a fixed number
of outcomes), there might be a risk of overfitting when
learning the algorithm for high number of outcomes,
as for job categorization in section 5 with high number
of outcomes compared to base size |Γ|. For these two
reasons, we build a vector from the scores s(q, o) before
applying a classification algorithm.

To build this vector, we want to avoid principal com-
ponents analysis. It reduces the dimension, but can
only be applied in case when outputs oi belongs to
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fixed classes, whereas we regard a problem with gene-
rally not defined classes. Moreover, the final projection
can reduce drastically one component such that it is
not taken into account in the correctness estimation.
We will thus only consider the ranked k highest values
of s(q, o), where k ∈ N. One can link this process with
the distance D computation, where the 2 highest com-
ponents are considered. This process defines the top-k
scores vector ~Φk(q) :

~Φk(q) =


maxo∈Oqs(q, o)

2nd maxo∈Oq s(q, o)
...

kth maxo∈Oq s(q, o)

 ∈ Rk

One notes that ~Φk can be viewed as a feature map,
mapping a query q in the feature space Rk.

The correctness is then estimated from the formula
below :

Ĉq = ϕ
(
~Φk(q)

)
(2)

Where the prediction function ϕ
(
~X ∈ Rk

)
∈ [0, 1]

is learned on the validation dataset Γ, expressed as
a set of entries (~Φk(q), y) where y = 1 when the top
ranked outcome o∗ is relevant for the query q, and y = 0
otherwise.

5 Two real-world Ranking Sys-
tems

We consider two real-world systems for our correct-
ness estimation and automation. Their brief descrip-
tions are more detailed in distinct papers ([EM14]/
submitted in ICCBR 2015). The technical characteris-
tics are detailed in table 2.

5.1 Categorization of Job Offers

To standardize its data, and in particular its mil-
lions of job ads, Multiposting is developing a computer-
assisted tool for categorizing job offers, by matching
them with the concepts of an ontology. Job categories
are represented by the ROME ontology, an equivalent
of O*Net [DNG+13] with 531 categories, provided by
Pole Emploi (http ://www.pole-emploi.fr.), the French
national employment service. Pole Emploi provides job
category descriptions, separated into textual fields :
title, description, skills, tasks, place of work, typical
job titles.

The algorithm takes a job offer -a query- and tries
to match it with a category description - the outcomes.

This is done by predicting a similarity s(q, o) between
offer q and category o. As the query is a job offer,
it is separated into 4 textual fields (title, description,
profile, company description) ; for each field f = 1..4
we extract a vector ~qf , following the process described
in [RL03]. Thus a job offer is represented by a tuple of
vectors defined as follows :

q = (~q1, ..., ~q4)

Similarly, an outcome o represents a job category, sepa-
rated into 14 vectorized textual fields : o = (~o1, ..., ~o14).

The method proposed in ?? focuses on the field to
field similarity cos(~qf , ~of ′), computed from cosine simi-
larity as defined in [SWY75]. The idea behind this simi-
larity is to independently compare a field to another. To
consider a field represented by ~qf might be meaningful
when compared to ~of ′1 but totally irrelevant when com-
pared to ~of ′2 . Approaches weighting terms according to
their fields - as proposed in [SP11] or in [EM14] - can’t
handle such situation. The predicted similarity score
between q and o is then defined as :

s(q, o) =

4∑
f=1

14∑
f ′=1

λf,f ′cos(~qf , ~of ′)

Where λ ∈ M4,14(R) are the similarities weights,
that are learned on the validation base Γ. For this pur-
pose, our experts have manually assigned categories to
more than 1,300 job offers, helped by an open source
information retrieval system (Solr [SP11]). A job offer
can be assigned to several categories or none, even if
in practice, we need one and only one.

5.2 Semantic Matching of Taxonomies

To save Multiposting clients’ time, employees need to
semantically match a taxonomy to another one, refer-
red as the source and the target taxonomies. The taxo-
nomies represent for instance company sectors, courses
provided in a university or a website jobs classifica-
tion. Each item of the source taxonomy needs one and
only one equivalent item in the target taxonomy. The
company has developped an interface for employees to
complete this task, with source taxonomy on the left,
and target one on the right.

The system aims at ranking the possible matchings
by semantic relevance. It considers leaves of the source
taxonomy one by one ; such a leaf is then conceptually
a query q. Similarly, the target taxonomy is concep-
tually the set of possible solutions, each target leaf
being an outcome o. The algorithm computes a score
for each possible matching s(q, o), evaluating the se-
mantic equivalence between q and o. In practice, to
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represent a taxonomy leaf, we consider only the tex-
tual label of the leaf and that of the parent, such
as (”Web Development”, ”IT Department”). We ex-
tract then two vectors following the process described
in [RL03] to form q, and define the similarity among
leaves f(q, q′) as :

q = (~q1, ~q2) f(q, q′) =
1

2

(
cos(~q1, ~q

′
1)+cos(~q2, ~q

′
2)
)

This definition ensures keeping information about
the hierarchy and doesn’t mix labels of different depth.
In this system, Oq is the target taxonomy, and changes
at every taxonomy matching. We define a similarity
g(Oq, O

′
q) that captures how the vocabularies of taxo-

nomies Oq and O′q are similar, thanks to a cosine simi-
larity between bag of words vectors for these vocabu-
laries.

The idea to compute the semantic similarity s(q, o) is
to express the base Γ as a case base CB = {(q,Oq, o)},
where we only keep the positive cases or semantic
matches validated by the employees. The target taxo-
nomy Oq is implicitely precised by the query, and se-
mantic matching score s(q, o) is then computed using :

s(q, o) = max
(q′,O′q,o

′)∈CB
f(q, q′) · f(o, o′) · g(Oq, O

′
q)

This approach can be viewed as a case-based reaso-
ning [Lop13]. The definition of f ensure that s(q, o) ∈
[0, 1], but we don’t expect any probabilistic interpreta-
tion of scores, because of the specificity of their compu-
tation. The systematic manual validation through the
interface keeps enriching the case base CB.

6 Experiments on the Systems

6.1 Method For Evaluation

For dynamic methods, our validation relies on a 5-
folds cross validation : the algorithm estimating Cq is
trained on a part of Γ and then used to predict cor-
rectness on the other part. We compared our methods
with a random prediction, for which Ĉq = 0.5.

The tricky part of this validation is to learn the Cq

estimation from unbiased values s(q, o). Generally, and
it is the case in our real-world systems, the scoring
function s is learned on the base Γ, and we must pay
attention to the way we build the training set for Ĉq,
built from s(q, o) values. When learning functions ψ
and ϕ, every s(q, o) training value needs to reflect the
value that would be predicted for an unseen query q.
Thus, at each fold of the cross-validation, we perform

a second-level cross-validation on the training fold, to
compute unbiased s(q, o) values on the fold. The su-
blevel cross-validation is for learning and predicting s,
while the main cross-validation is for learning and pre-
dicting φ or ϕ.

6.2 Learning functions for ϕ and ψ

The approaches described in sections 4.2 and 4.3 rely
on functions ψ and ϕ. They are respectively trained
on scores s(q, o) and top-k scores ~Φk(q) to estimate
the correctness Ĉq. We used the following algorithms
in our experiments, as being classification algorithms
whose output can be interpreted as a probability.

An algorithm showing good results in posterior pro-
bability estimation [HJL04] is to fit a sigmoid on the
vectors X. The output is P(Y = 1|X) = 1

1−e−(β0+β.X) ,
where β0 ∈ R and β has the dimension of X.

A popular algorithm is K nearest neighbors [Alt92]
(K = 20 in our experiments). The idea is to consider
the K closest vectors Xi in the base (i = 1..K), with
respect to a distance d(X,Xi). The output is P(Y =

1|X) = 1
K

∑K
i

Yi
d(X,Xi)

We will also consider the random forest [Bre01], com-
bining randomized decision trees (300 trees in our ex-
periments). Each tree outputs a probability Ptree(Y ),
and the forest averages them to output P(Y = 1|X) =∑

trees Ptree(Y=1|X)

|{trees}|

6.3 Performance Metrics Used

To estimate the quality of our estimation Ĉq, we
compare it with the corresponding ideal values 1 when
o∗ is relevant, and 0 when it is not, leveraging the fol-
lowing performance metrics :

- The mean square error :

MSE =
1

|Γ|

( ∑
(q,Oq)∈Γ

o∗ relevant

(Ĉq − 1)2 +
∑

(q,Oq)∈Γ

o∗ irrelevant

Ĉ2
q

)
- The negative log-likelihood :

LL = − 1

|Γ|

( ∑
(q,Oq)∈Γ

o∗ relevant

log(Ĉq)+
∑

(q,Oq)∈Γ

o∗ irrelevant

log(1−Ĉq)

)
- The area under the ROC curve ROC − AUC, as

defined in [OM10].

6.4 Experimental Results

6.4.1 Heuristic-Based Estimation

On both datasets, ROC − AUC values in table 3
show that heuristic approaches seem to detect relati-
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Ranking System

Categorization Semantic Matching

|Γ| : Number of queries in dataset 1,338 203,990

Outcomes Oq Job categories, Fixed Taxonomy items Change at every query

|Oq | : outcomes per query 531 3 to 1000

|Or
q | : relevant outcomes per query 0 to 3 1

Number of pairs (q, o) 710,478 72,523,082

Range for s(q, o) Unbounded [0, 1]

Accuracy@1 of initial ranking system 65% 49%

Table 2 – Characteristic from our datasets.

vely well the queries with a correct first outcome. Se-
cond, ROC−AUC is higher for distance (equation ??) :
it confirms the relevancy to consider several scores. Ho-
wever, these metrics don’t have a good probabilistic
interpretation, as the log-likelihood and mean square
error are even lower than for a random correctness,
and would be thus inappropriate for visualization on
an interface.

Categorization
ROC-AUC LL MSE

Random 0.50 ± 0.00 0.69 ± 0.00 0.25 ± 0.00

Maximum 0.73 ± 0.03 1.41 ± 0.14 0.49 ± 0.05

Distance 0.75 ± 0.00 2.20 ± 0.23 0.57 ± 0.06

Semantic Matching
ROC-AUC LL MSE

Random 0.50 ± 0.00 0.69 ± 0.00 0.25 ± 0.00

Maximum 0.70 ± 0.03 1.74 ± 0.35 0.36 ± 0.06

Distance 0.75 ± 0.02 3.46 ± 0.44 0.43 ± 0.08

Table 3 – Performance of Heuristic-Based Estima-
tion.

6.4.2 Estimation from Independent Scores

We evaluated the estimation from independent
scores (table 4). For both tests, the log-likelihood and
mean square error are lower than for previous metrics :
we succeed in better estimating the probability. Howe-
ver, the ROC−AUC remains quite low, suggesting not
to consider the scores s(q, o) independently for our pro-
blem. Moreover, the training is much longer as there is
an entry for each pair q, o. As a consequence, a compu-
ter with 8 cores and 16GB of RAM couldn’t perform
the tests on the semantic matching database with pre-
diction by random forest and nearest neighbors algo-
rithms.

Categorization
ROC-AUC LL MSE

Neighbors 0.70 ± 0.03 4.02 ± 1.82 0.26 ± 0.02

Forest 0.70 ± 0.03 12.56 ± 3.67 0.28 ± 0.02

Sigmoid 0.76 ± 0.02 0.72 ± 0.02 0.22 ± 0.00

Semantic Matching
ROC-AUC LL MSE

Sigmoid 0.65 ± 0.02 1.34 ± 0.14 0.35 ± 0.03

Table 4 – Performance of Estimation learnt on inde-
pendent scores.

6.4.3 Estimation from Top-k Scores

First, we studied the value of k to consider for the
top-k scores Φk(q). ROC −AUC values when k varies
(figure 1) suggest that k = 4 is sufficient for both data-
set. For the semantic matching dataset, the 3 learning
algorithms seems equivalent, while for the categoriza-
tion (smallest dataset), the logistic regression shows
better performance, showing nevertheless an overfit for
high values of k ; Indeed, random forest and nearest
neighbours generally need a large training set to work
well.

Table 5 shows performances for k = 4. Firstly, it
confirms that considering top-k scores is relevant to es-
timate the correctness, as results are better than for
previous estimations. Secondly, using sigmoid for ϕ
seems to be appropriate for probability estimation :
on one hand, it gives high ROC −AUC, one the other
hand, it approaches relatively well the ideal probability
(see log-likelihood). Last but not least, the training is
relatively fast and not memory costly, because it is per-
formed on entries Φk(q) ∈ R4 at the number of |Γ|. If
our model gives results on just a thousand of queries
(job categorization system), it can also be trained on
a large dataset (semantic matching).
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Figure 1 – Performances of estimation with respect
to k, on categorization dataset in the left and semantic
matching dataset in the right.

Categorization
ROC-AUC LL MSE

Neighbors 0.76± 0.02 1.41± 0.56 0.19± 0.01

Forest 0.74 ± 0.02 0.58 ± 0.03 0.20 ± 0.02

Sigmoid 0.77 ± 0.02 0.58 ± 0.01 0.20 ± 0.01

Semantic Matching
ROC-AUC LL MSE

Neighbors 0.76 ± 0.01 1.74 ± 0.15 0.20 ± 0.01

Forest 0.77 ± 0.01 0.72 ± 0.10 0.19 ± 0.01

Sigmoid 0.77 ± 0.02 0.57 ± 0.02 0.19 ± 0.01

Table 5 – Performance of Estimations learnt on Top-k
Scores.

6.5 Efficiency of the Semi Automatic
System : choice of threshold

We now consider the system that always selects the
top ranked outcome as a result (algorithm 1), along
with the estimated correctness. As described in table
6, we split the queries in two parts using a threshold
on Ĉq, automatically process the first one, and keep
the initial ranking system for the second one. For a
given threshold t on the correctness, let Coveraget be
the proportion of queries of Γ such that Ĉq > t and
Precisiont the precision of the automatic system on
this subpart of queries. One notes that Precisiont also
corresponds to the accuracy at 1 of the ranking system
on the first part of queries.

To visualize the optimal threshold for such a system,
we plotted the accuracy with respect to the coverage
in figure 2. The curve is more regular with the esti-
mation learned on top-k scores, which is crucial for
industrial strategy. We note that the first half of the
figures is more important - where the accuracy is hi-
gher. These curves show which correctness estimation
yields to better accuracy for the hybrid system : on
the categorization dataset (figure 2, left), for an objec-
tive of 90% of job correctly categorized, we can cover
31% of cases when Cq is estimated from top-k scores,
against 19% for distance or 25% for estimation from
independent scores. This gap is even deeper for taxo-
nomy matching (figure 2, right) ; the best industrial
strategy corresponds to the one provided by the nea-
rest neighbors estimation from global score. With this
estimation, for an objective of 80% of accuracy, we co-
ver 34% of the matchings, while an estimation from
independent scores can’t provide this accuracy.

7 Conclusion and Future Work

We proposed a method to semi automate a ranking
system, involving the estimation of the probability that
the system suggests a correct first outcome ; this esti-
mation is based on top-k scores and fitting a sigmoid
on a learning set. Experiments we conducted on 2 real-
world datasets yields to better results for our approach,
compared to heuristic-based or independent score ba-
sed estimations ; moreover, our method doesn’t require
a large amount of data to learn an efficient estimation,
compared to the requirements of litterature multiclass
probability estimates. The correctness estimation and
automation can be applied to a wide range of ranking
systems, as the computation is class independent and
rely on few assumptions ; our real-world systems are
for instance a field to field job/category matching and
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Ranking System Semi-Automatic System
For all queries : Queries such that Ĉq > t : Queries such that Ĉq < t :
(100% queries) (Coveraget % queries) (1− Coveraget % queries)

Manual validation, Visualization of Ĉq Automatic decision, Precisiont Manual validation

Table 6 – Description of a semi-automatic system compared to the basic one

Figure 2 – Coverage with respect to the Precision, on
categorization dataset on the left and semantic mat-
ching dataset on the right.

a case base reasoning for taxonomy matching.

Our next work will focus on improving the correct-
ness estimation from additional features given by the
ranking system. We remained in a general case by re-
lying only on the scores used for ranking, but we hope
for instance to better estimate correctness by taking
into account the taxonomy of job categories in the job
ads categorization.
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