
1 Preliminaries

1.1 Hyper Sphere and Hyper Ball

In this section we introduce notation for the fundamental geometrical objects
that we will use thorough this proof. We will freely make use of terms like
volume, area or surface to guide the reader along our line of though. Nonethe-
less, these concepts are misleading and somewhat overlapping, especially when
discussing high-dimensional geometry. Thus, we will also give explicit definition
for these terms in order to avoid any misunderstanding of our argument.

Definition 1 (n-dimensional Sphere). We call n-sphere of center O ∈ Rn and
radius R ∈ R and write S(O,R) ⊂ Rn the subset

S(O,R)
.
= {x ∈ Rn : ‖x−O‖2 = R}

Definition 2 (n-dimensional Ball). We call n-ball of center O ∈ Rn and radius
R ∈ R and write B(O,R) ⊂ Rn the subset

B(O,R)
.
= {x ∈ Rn : ‖x−O‖2 < R}

Definition 3 (Surface of a spehe). We call Surface of the n-sphere S(O,R)
and write V(S(O,R)) the n− 1 dimensional volume

V(S(O,R))
.
= Πs

n ×Rn−1

Where Πs
n is a constant factor depending only on n

Definition 4 (Volume of a Ball). We call Volume of the n-ball B(O,R) and
write V(B(O,R)) the n-dimensional volume

V(B(O,R))
.
=

∫ R

0

V(S(O, r))dr

That is

V(B(O,R)) =

∫ R

0

Πs
nR

n−1dr

=
Πs

nR
n

n
= ΠnR

n

Where Πn
.
=

Πs
n

n is a constant factor depending only on n.

1.2 Hyper-Cone

From these core definitions, we can now introduce (Hyper)-cone and some of
their core properties. Intuitively, an Hyper-cone of dimension n + 1, center
O, radius R and height H is a sequence of n-Ball of linearly decreasing radius
between R and 0, each one living on a difference “slice” of Rn+1 between 0 and
H.
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Definition 5 (Hyper-cone). We call Hyper-cone of dimension n + 1, base
B(O,R) ⊂ Rn and height H the set :

H
.
=

⋃
∀h∈[0,H]

B
(
O + (H − h)un+1,

h

H
R

)

Where un+1 is the n+ 1th base vector of Rn+1.

Alternatively, we can define the apex Z
.
= O +H × un+1 of the hyper-cone

and give the following definition :

Definition 6 (Hyper-cone (2)). We call Hyper-cone of dimension n + 1, base
B(O,R) ⊂ Rn and apex Z the convex hull conv ({B(O,R), z}).

We are now ready to state the core properties of Hyper-cone that we will
use in the remaining of the proof.

Let’s start with the volume of a Hyper-cone

Definition 7 (Volume of Hyper-cone). Given an Hyper-cone C ∈ Rn+1 of
dimension n + 1, base B(O,R) ⊂ Rn and height H we call volume and write
V(C) the n+ 1-dimensional volume :

V(C)
.
=

∫ H

0

V

(
B
(
O + (H − h)un+1,

h

H
R

))
dh

Proposition 1. The volume of the Hyper-cone C ⊂ Rn+1 of dimension n+ 1,
base B(O,R) ⊂ Rn and height H is

V(C) =
ΠnR

n

n+ 1
H

Proof. From the definition of volume of a sphere we have V(B(O,R))
.
= ΠnR

n.
Substituting R by h/HR and from the definition of the volume of a Hyper-cone
we have

V(C) =

∫ H

0

Πn

(
h

H
R

)n

dh

=
ΠnR

n

Hn

∫ H

0

hndh

=
ΠnR

n

Hn
× Hn+1

n+ 1

=
ΠnR

n

n+ 1
H
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1.3 Center of Mass

With the previous definition formally stated, we can now go one step further
and define the center of mass of center of gravity

Definition 8 (Center of gravity). For a given set X ⊂ Rn we call center of
gravity 1 and write cg(X) ∈ Rn the point :

cg(X) =

∫
x∈X

xdx

Proposition 2. Let S a n-dimensional sphere such that S
.
= S(O,R). Then

cg(S) = O.

Proof. Without loss of generality, assume that O = 0. Then, S = {x ∈ Rn :
‖x‖2 = R}. Since ‖x‖2 = ‖ − x‖2 it is clear that ∀x ∈ Rn : x ∈ S ⇔ −x ∈ S.
Thus, we can rewrite cg(S) as

cg(S) =
1

V(S)

∫
x∈S
−xdx

Thus

2cg(S) =
1

V(S)

(∫
x∈S

xdx+

∫
x∈S
−xdx

)
=

1

V(S)

∫
x∈S

x− xdx

= 0

Proposition 3. Let B a n-dimensional ball such that B
.
= B(O,R). Then

cg(B) = O.

Proof. Remind that B can be seen as a collection of concentric n-sphere of
center O and radii between 0 and R. Notably, this construction is implicit in
the definition of V(B). Then, we can rewrite cg(B) as

cg(B) =
1

V(B)

∫ R

0

cg(S(O, r))V(S(O, r))dr

= O

Where the last line come from Proposition 2.

Proposition 4 (Center of Gravity of an Hyper-cone). Let C a n+1 dimensional
Hyper-cone (C ⊂ Rn+1) of base B(O,R) ⊂ Rn and apex Z such that ‖Z−O‖2 =
H. Then, cg(C) is located on the segment [O;Z] at a distance H/n+2 of O.

1For a more complete definition, we should take into account the mass distribution over X
and the density of X. Although, in an effort to keep things simple, we assume a density of 1
and a uniformly distributed mass.
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Proof. Without loss of generality, we assume that O = 0 and Z = Hun+1.
Where un+1 is the n+ 1th base vector of Rn+1. By definition, C is a collection
of ball, and in a similar way as before we can rewrite cg(C) as :

cg(C) =
1

V(C)

∫ H

0

cg(B((H − h)un+1, h/HR))V(B((H − h)un+1, h/HR))dh

From this and Proposition3 it is clear that cg(C) lies on the segment [O;Z].
The remaining of the proof came by explicitly calculating cg(C).

cg(C) =
1

V(C)

∫ H

0

(H − h)un+1 ×V(B((H − h)un+1, h/HR))dh (Prop. 3)

=
1

V(C)

∫ H

0

(H − h)un+1
ΠnR

n

Hn
hndh (Volume of a Ball)

=
1

V(C)

[∫ H

0

ΠnR
nHun+1

Hn
hndh−

∫ H

0

ΠnR
nun+1

Hn
hn+1dh

]

=
1

V(C)

[
ΠnR

nun+1

Hn−1

∫ H

0

hndh− ΠnR
nun+1

Hn

∫ H

0

hn+1dh

]

=
1

V(C)

[
ΠnR

nHn+1un+1

Hn−1(n+ 1)
− ΠnR

nHn+2un+1

Hn(n+ 2)

]
=

1

V(C)

[
ΠnR

nH2un+1

n+ 1
− ΠnR

nH2un+1

n+ 2

]
=

n+ 1

ΠnRnH

[
ΠnR

nH2un+1

n+ 1
− ΠnR

nH2un+1

n+ 2

]
(Volume of a Hyper-cone)

=

(
H −Hn+ 1

n+ 2

)
un+1

=

(
1− n+ 1

n+ 2

)
Hun+1

=

(
n+ 2− n− 1

n+ 2
Hun+1

)
=

(
H

n+ 2

)
un+1

That is to say, cg(C) is on the segment [O;Z] at a distance H/n+2 of O.

1.4 Hyperplane and Halfspace

Definition 9. We call n-Hyperplane of normal w ∈ Rn and offset b ∈ R and
write W (w, b) ⊂ Rn the subset :

W (w, b)
.
= {x ∈ Rn : 〈w, x〉+ b = 0}
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Definition 10. We call Positive n-Halfspace of n-Hyperplane W (w, b) ⊂ Rn

and write W+(w, b) ⊂ Rn the subset

W+(w, b)
.
= {x ∈ Rn : 〈w, x〉+ b ≥ 0}

Definition 11. We call Negative n-Halfspace of n-Hyperplane W (w, b) ⊂ Rn

and write W−(w, b) ⊂ Rn the subset

W−(w, b)
.
= {x ∈ Rn : 〈w, x〉+ b ≤ 0}

Additionally, note that W (w, b) ⊂W+(w, b) but W (w, b) 6⊂W−(w, b).

Definition 12. For any subset X ⊂ Rn and any n-Hyperplane W ⊂ Rn we call
Positive Partition and write X+ ⊂ Rn the subset

X+ .
= X ∩W+

Definition 13. For any subset X ⊂ Rn and any n-Hyperplane W ⊂ Rn we call
Negative Partition and write X+ ⊂ Rn the subset

X−
.
= X ∩W−

Proposition 5 (Volume reduction of Hyper-Cone). For any (n+1)-Hyper-cone
of base B(O,R), apex Z and Height H, let set Wcg(C)

.
= W (un+1, H/n+2) the

(n+1)-Hyperplane passing by cg(C) ( i.e. cg(C) ∈Wcg(C) ) and parallel to Rn.
Then,

V(C+) = V(C)

 1(
1 + 1

n+1

)n+1

 ≥ V(C)e−1

Proof. We start by proving the right-hand side of the relation. Let set n′ = n+1
and divide both side by V(C) then we can rewrite it as

1(
1 + 1

n′

)n′ ≥ e−1

From the usual definition of e we have that

lim
n→∞

(
1 +

1

n′

)n′

= e

⇔ lim
n′→∞

1(
1 + 1

n′

)n′ = e−1

And by simple induction argument we can show that

1(
1 + 1

n′

)n′ ≥
1(

1 + 1
n′+1

)n′+1
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Therefore
1(

1 + 1
n′

)n′ ≥ lim
n→∞

1(
1 + 1

n′

)n′ = e−1

Finally, the left-hand side of relation is obtained by direct calculation of
V(C+). The general idea is the same than the calculation of V(C) but, instead
of integrating over the entire height we stop at H(1−1/n+2), thus ignoring C−.
Besides, without loss of generality, we assume that O = 0 and that Z = Hun+1.

V(C+) =

∫ H(1− 1
n+2 )

0

V

[
B
(

(H − h)un+1,
R

H
h

)]
dh

=

∫ H(1− 1
n+2 )

0

Πn
Rn

Hn
hndh

=
ΠnR

n

Hn

∫ H(1− 1
n+2 )

0

hndh

=
ΠnR

n

Hn
× Hn+1

n+ 1
×
(

1− 1

n+ 2

)n+1

=
ΠnR

nH

n+ 1
×
(

1− 1

n+ 2

)n+1

= V(C)

(
1− 1

n+ 2

)n+1

= V(C)

(
n+ 1

n+ 2

)n+1

= V(C)

(
(n+ 1)× 1

n+1

(n+ 2)× 1
n+1

)n+1

= V(C)

(
1

n+2
n+1

)n+1

= V(C)

(
1

1 + 1
n+1

)n+1

= V(C)

 1(
1 + 1

n+1

)n+1



2 State of the Art

This section is basically a rewriting of the proof of (Grunbaum, 1960) in a more
comprehensive way.

6



2.1 Setting

Let K a (full dimensional) convex set in Rn+1.

Definition 14. For any convex body K ∈ Rn+1 we say that K is Spherically
Symmetric along the unit vector u if and only if ∀λ ∈ R the cut of K by the
hyperplane W (u, λ) (i.e. K∩W (u, λ)) is a n dimensional hypersphere of center
λu

2.2 Theorem

We want to prove the following theorem :

Theorem 1. For any convex set K ⊂ Rn+1, and any hyperplane W . If cg(K) ∈
K+ then

V(K+) ≥ e−1 ×V(K)

Proof.

Note 1 (Points along un+1). This proof will revolve around key points located
on the n + 1th axis of Rn+1 of base vector un+1. In an attempt to avoid over-
burdening the notation, we will treat these points as number along the real line
when context is clear. Therefore, if x = λ1un+1 and y = λ2un+1 we will freely
write x > y if λ1 > λ2.

Let W the hyperplane such that W = arg minW V(K+) such that cg(K) ∈
K+. It is easy to see that cg(K) ∈ W : if cg(K) /∈ W you can always reduce
V(K+) by shifting W toward cg(K). Without loss of generality, let’s say that
cg(K) = 0 the origin of Rn+1 and that un+1, the n + 1th dimensional base
vector of Rn+1, is the normal vector of W with b ∈ R− set accordingly such
that W = W (un+1, b).

In order to ease the comprehension of the proof, we make the following
assumption that we will lift later on.

Assumption 1. K is a convex body which is Spherically Symmetric along un+1

A direct implication of this is that cg(K) = cg(K ∩W ). In other words,
cg(K) is the center of the n − 1 dimensional sphere K ∩W (see, for example,
the argument of Prop. 4 ).

Let C+ the cone of base K ∩ W and apex Z such that C+ ⊂ W+ and
V(C+) = V(K+). By construction we have that Z = Hun+1 where H is the
height of C+.

Moreover either :

• K+ = C+ and Z is the apex of K+

• Z /∈ K+

To prove that, remember that each slice K∩W (un+1, λ) of K along the n+1
axis is a sphere. We look at the function r() which maps each value of λ with
the radius of the corresponding slice. If K+ is a Hyper-cone, by definition r() is
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linear. If r() has any convex part, then there exists an arc [r(λ1), r(λ2)] which
is not in K+ and therefore K+ is not a convex set. Therefore r() is strictly
concave, then, by definition of concave function, either C+ ⊂ K+ and therefore
V(K+) ≥ V(C+) –Which is a contradiction– or Z /∈ K+.

The (potentially) more elongated shape of C+ means that cg(C+) is on the
closed segment [cg(K+), Z].

In other word, and according to Note 1 :

0 = cg(K) ≤ cg(K+) ≤ cg(C+) ≤ Z

We now define C− by extending C+ such that C
.
= C− ∪ C+ is a cone of

apex Z and V(C−) = V(K−). Therefore,

V(C) = V(C+) + V(C−)

= V(K+) + V(K−)

= V(K)

Once again, we are interested in the relative position of cg(K−) and cg(C−).
We invoke the same arguments than before and claim that, in a similar way :

cg(K−) ≤ cg(C−) ≤ 0 = cg(C)

Remark 1. The proof for this is a little more tricky this time though. Part of
this is due to the lack of common base for K− and C− and the fact that C−

is not a Hyper-cone in itself. A possible start is to consider the radius increase
along the reverse axis un+1

.
= −un+1 and replicate the previous argument.

Let α, β ∈ R such that α
.
= V(K+)

/ V(K)
and β

.
= V(K−)/V(K). Then

V(K) = αV(K+) + βV(K−)

Or, alternatively

V(C) = αV(C+) + βV(C−)

Combining the previous inequalities, we have that

cg(K) ≤ cg(C)

Moreover, we know from Proposition 4 that cg(C) is at a distance H/n+1+2

of its base.
Let W̃

.
= W (un+1, b̃) such that cg(C) ∈ W̃ and write C̃+ the positive

partition of C by W̃ , that is C̃+ .
= W̃+ ∩ C.

From Proposition 5 we have that V
(
C̃+
)
≥ e−1V(C). Moreover, because

of cg(C) ≥ cg(K) we have that V(C+) ≥ V
(
C̃+
)

.

Putting all of this together we get that

8



V(K+) = V(C+)

≥ V
(
C̃+
)

≥ e−1V(C)

= e−1V(K)

Finally, all we have left is to deal with Assumption 1. This is simply tackled
by remarking that, by definition, spherical symmetrization preserve volumes
along its axis. Thus, for any K of any convex shape it suffices to consider the
spherical symmetrization of K : symS(K) and we have

V(K+) = V(symS(K+)) ≥ e−1V(symS(K)) = V(K)

3 Generalized Volume Reduction

This section prove the generalization of the previous result.

Theorem 2. For any d ∈ N, any convex set K ⊂ Rn+1, any hyperplane W of

normal vector a and any X
.
= cg(K) + aλ

(n+1)V(K)[1− 1
n+1 ]

ΠnRn
K

. Where RK is the

radius of the of symS(K) ∩W If X ∈ K+ then

V(K+) ≥ (1− λ)n+1 ×V(K)

Proof. The proof essentially follows the same line of thoughts than the one of
Grunbaum and the construction is similar.

Namely, we construct C, C+ and C− with respect to W as in the previous
proof.

Once again, we will compare points that are along the axis of a and we will
consider them as real for readability concerns.

We are interested in the distance between the apex Z of C and X as this
distance is characteristic of the volume of the volume of C+ :
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Z −X = Z − cg(K)− λ
(n+ 1)V(K)

[
1− 1

n+1

]
ΠnRn

K

≥ cg(C)− λ
(n+ 1)V(K)

[
1− 1

n+1

]
ΠnRn

K

≥ cg(C)− λ
(n+ 1)V(K)

[
1− 1

n+1

]
ΠnRn

=

[
1− 1

n+ 1

]
H − λ

(n+ 1)V(K)
[
1− 1

n+1

]
ΠnRn

=

[
1− 1

n+ 1

]
H − λ

[
1− 1

n+ 1

]
H

= (1− λ)H

[
1− 1

n+ 1

]
Define X ′ such that Z −X ′ .= (1− λ)H

[
1− 1

n+1

]
. On a side note, remark

that

X ′ = cg(C)− λ
(n+ 1)V(K)

[
1− 1

n+1

]
ΠnRn

K

Similarly to C+, define C ′+ with respect to X ′. The previous inequality
implies that C ′+ ⊆ C+, thus

V(K+) = V(C+) ≥ V(C ′+)

And the theorem comes from the closed form of V(C ′+)

V(C ′+) =

∫ X′

0

(
B
(
O + (H − h)un+1,

h

H
R

))
dh

= (1− λ)n+1

[
1− 1

n+ 1

]n+1

V(C)

≥ (1− λ)n+1e−1V(C)
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