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Résumé

Nous considérons le problème du transfert de connais-
sances à priori dans le contexte de l’apprentissage super-
visé de métriques. Si ce cadre a déjà été appliqué avec
succès de manière empirique, il n’existe pas de cadre
théorique justifiant une telle approche. Dans ce papier
nous proposons une justification théorique basée sur la
notion de stabilité algorithmique adaptée pour l’appren-
tissage supervisé de métriques. Nous présentons une
nouvelle définition de la stabilité, on-average-replace-
two-stability, qui nous permet de montrer des bornes
en généralisation avec un taux de convergence rapide
lorsque qu’une métrique source auxiliaire est utilisée
pour biaiser le terme de régularisation. De plus, nous
dérivons des bornes de consistance qui nous permettent
de montrer l’intérêt de considérer une régularisation
biaisée pondérée pour laquelle nous présentons une solu-
tion pour estimer le poids de la métrique source. Nous
vérifions empiriquement l’intérêt de notre approche
dans un cadre d’apprentissage de métrique standard et
sur un problème d’apprentissage par transfert lorsque
seulement quelques étiquettes cibles sont disponibles.

Mots-clef : Apprentissage de métriques, Théorie de
l’apprentissage, Stabilité algorithmique, Apprentissage
par transfert.

1 Introduction

A lot of machine learning problems, such as clus-
tering, classification or ranking, require to accurately
compare examples by means of distances or similarities.
Designing a good metric for a task at hand is thus of
crucial importance. Manually tuning a metric is in gene-
ral difficult and tedious, a recent trend consists to learn
the metrics directly from data. This has led to the emer-
gence of supervised metric learning, see [BHS13, Kul13]
for up-to-date surveys. The underlying idea is to infer

automatically the parameters of a metric in order to cap-
ture the idiosyncrasies of the data. In a supervised clas-
sification perspective, this is generally done by trying
to satisfy pair-based constraints aiming at assigning a
small (resp. large) score to pairs of examples of the same
class (resp. different class). Most of the existing work
has notably focused on learning Mahalanobis-like dis-
tances of the form dM(x,x′) =

√
(x− x′)TM(x− x′)

where M is a positive semi-definite (PSD) matrix 1, the
learned matrix being typically plugged in a k-Nearest
Neighbor classifier allowing one to achieve a better
accuracy than the standard Euclidean distance.

Recently, there is a growing interest for methods
able to take into account some background knowledge
[PW10, CYL13, BYGP14] for learning M. This is in
particular the case for supervised regularized metric
learning approaches where the regularizer is biased with
respect to an auxiliary metric given under the form
of a matrix. The main objective here is to make use
of this a priori knowledge in a setting where only few
labelled data are available to help learning. For example,
in the context of learning a PSD matrix M plugged
into a Mahalanobis-like distance as discussed above, let
I be the identity matrix used as an auxiliary knowledge,
‖M− I‖ is a biased regularizer often considered. This
regularization can be interpreted as follows : learn M
while trying to stay close to the Euclidean distance, or
from another standpoint try to learn a matrix M which
performs better than I. Other standard matrices can be
used such as Σ−1 the inverse of the variance-covariance
matrix, note that if we take the 0 matrix, we retrieve
the classical unbiased regularization term.

Another useful setting comes when I is replaced by
any auxiliary matrix MS learned from another task.

1. Note that this distance is a generalization of some well-
known distances : when M = I, I being the identity matrix,
we retrieve the Euclidean distance, when M = Σ−1 where Σ is
the variance-covariance matrix of the data at hand, it actually
corresponds to the original definition of a Mahalanobis distance.
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This corresponds to a transfer learning approach where
the biased regularization can be interpreted as trans-
ferring the knowledge brought by MS for learning M.
This setting is appropriate when the distributions over
training and testing domains are different but rela-
ted. Domain adaptation strategies [BBC+10] propose
to make use of the relationship between the training
examples, called the source domain, and the testing
instances, called the target domain to infer a model.
However, it is sometimes not possible to have access to
all the training examples, for example when some new
domains are acquired incrementally. In this context,
transferring the information directly from the model
learned from the source domain without any other ac-
cess to the source domain is of crucial importance. In
the context of this paper, we call this setting Metric
Hypothesis Transfer Learning in reference to the Hypo-
thesis Transfer Learning model introduced in [KO13]
in the context of classical supervised learning.

Metric learning generally suffers from a lack of theo-
retical justifications, in particular metric hypothesis
transfer learning has never been investigated from a
theoretical standpoint. In this paper, we propose to
bridge this gap by providing a theoretical analysis sho-
wing that supervised regularized metric learning ap-
proaches using a biased regularization are well-founded.
Our theoretical analysis is based on algorithmic sta-
bility arguments allowing one to derive generalization
guarantees when a learning algorithm does not suffer
too much from a little change in the training sample.
As a first contribution, we introduce a new notion of
stability called on-average-replace-two-stability that is
well-suited to regularized metric learning formulations.
This notion allows us to prove a high probability gene-
ralization bound for metric hypothesis transfer learning
achieving a fast converge rate in O(1/n) in the context
of admissible, lipschitz and convex losses. In a second
step, we provide a consistency result from which we
justify the interest of weighted biased regularization of
the form ‖M − βMS‖ where β is a parameter to set.
From this result, we derive an approach for assessing
this parameter without resorting to a costly parame-
ter tuning procedure. We also provide an experimental
study showing the effectiveness of transfer metric lear-
ning with weighted biased regularization in the presence
of few labeled data both on standard metric learning
and transfer learning tasks.

This paper is organized as follows. Section 2 intro-
duces some notations and definitions while Section 3
discusses some related work. Our theoretical analysis
is presented in Section 4. We detail our experiments in
Section 5 before concluding in Section 6.

2 Notations and Definitions

We start by introducing several notations and de-
finitions that will be used throughout the paper. Let
T be a domain equipped with a probability distribu-
tion DT defined over X × Y, where X ⊆ Rd and Y
is the label set. We consider metrics corresponding to
distance functions X × X → R+ parameterized by a
d× d positive semi-definite (PSD) matrix M denoted
M � 0. In the following, a metric will be represented
by its matrix M. We also consider that we have access
to some additional information under the form of an
auxiliary d× d matrix MS , throughout this paper we
call this additional information source metric or source
hypothesis. We denote the Frobenius norm by ‖ · ‖F ,
Mkl represents the value of the entry at index (k, l) in
matrix M, [a]+ = max(a, 0) denotes the hinge loss and
[n] the set {1, . . . , n} for any n ∈ N.

Let T = {zi = (xi, yi)}ni=1 be a labeled training set
drawn from DT . We consider the following learning
framework for biased regularized metric learning :

M∗ = arg min
M�0

LT (M) + λ‖M−MS‖F (1)

where LT (M) = 1
n2

∑
z,z′∈T l(M, z, z′) stands for the

empirical risk of a metric hypothesis M. Similarly we
denote the true risk by LDT (M) = Ez,z′∼DT l(M, z, z′).
In this work we only consider convex, k-lipschitz and
(σ,m)-admissible losses for which we recall the defini-
tions below.

Definition 1 (k-lipschitz continuity). A loss function
l(M, z, z′) is k-lipschitz w.r.t. its first argument if, for
any matrices M, M′ and any pair of examples z, z′,
there exists k ≥ 0 such that :

|l(M, z, z′)− l(M′, z, z′)| ≤ k‖M−M′‖F .

This property ensures that the loss deviation does
not exceed the deviation between matrices M and M′

with respect to a positive constant k.

Definition 2 ((σ,m)-admissibility). A loss function
l(M, z, z′) is (σ,m)-admissible, w.r.t. M, if it is convex
w.r.t. its first argument and if for any two pairs of
examples z1, z2 and z3, z4, we have :

|l(M, z1, z2)− l(M, z3, z4)| ≤ σ |y1y2 − y3y4|+m

where yiyj = 1 if yi = yj and −1 otherwise. Thus
|y1y2 − y3y4| ∈ {0, 2}.

This property bounds the difference between the
losses of two pairs of examples by a value only related
to the labels plus a constant independent from M.
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To derive our theoretical results, we make use of
the notion of algorithmic stability which allows one to
provide generalization guarantees. A learning algorithm
is stable if a slight modification in its input does not
change its output much. In our analysis we use two
definitions of stability. On the one hand, we introduce
in Section 4.1 the notion of on-average-replace-two-
stability which is an adaptation to metric learning of
the notion of on-average-replace-one-stability proposed
in [SSBD14] and recalled in Def. 3 below.

Definition 3 (On-average-replace-one-stability). Let
ε : N → R be monotonically decreasing and U(n) be
the uniform distribution over [n]. An algorithm A is
on-average-replace-one-stable with rate ε(n) if for any
distribution DT

ET∼DT
n

i∼U(n)
z′∼DT

[
l(A(T i), zi)− l(A(T ), zi)

]
≤ ε(n)

where A(T ), respectively A(T i) is the optimal solution
of algorithm A when learning with training set T , res-
pectively T i. T i is obtained by replacing the ith example
of T by z′.

This property ensures that, given an example, lear-
ning with or without it will not imply a big change
in the hypothesis prediction. Note that the property
is required to be true on average over all the possible
training sets of size n.

On the other hand, we consider an adaptation of
the framework of uniform stability for metric learning
proposed in [JWZ09] and recalled in Def. 4.

Definition 4 (Uniform stability). A learning algorithm
has a uniform stability in Kn , with K ≥ 0 a constant, if
∀i,

sup
z,z′∼DT

∣∣∣l(M∗, z, z′)− l(Mi∗, z, z′)
∣∣∣ ≤ K

n

where M∗ is the matrix learned on the training set
T , Mi∗ is the matrix learned on the training set T i

obtained by replacing the ith example of T by a new
independent one.

Uniform stability requires that a small change in the
training set does not imply a significant variation in
the learned models output. The constraint in O

(
1
n

)
over the supremum makes this property rather strong
since it considers a worst case over the possible pairs of
examples to compare, whatever the training set. It is
actually one of the most general algorithmic stability
setting [BE02].

3 Related Work

3.1 Metric Learning

Based on the pioneering approach of [XNJR02], me-
tric learning aims at finding the parameters of a distance
function by maximizing the distance between dissimilar
examples (i.e. examples of different class) while main-
taining a small distance between similar ones (i.e. of
similar class). Following this idea, one of the most fa-
mous approach, called LMNN [WBS05], proposes to
learn a PSD matrix dedicated to improve the k-nearest
neighbours algorithm. To do so, the authors force the
metric to respect triplet-based local constraints of the
form (zi, zj , zk) where zj and zk belong to the neigh-
bourhood of zi, zi and zj being of the same class, and
zk being of opposite class. The constraints impose that
zi should be closer to zj than to zk with respect to a
margin ε. In ITML, [DKJ+07] propose to use a Log-
Det divergence as a regularizer allowing one to ensure
an automatic enforcement of the PSD constraint. The
idea is to force the learned matrix M to stay as close
as possible to a good matrix MS defined a-priori (in
general MS is chosen as the identity matrix). Indeed,
if this divergence is finite, the authors show that M is
guaranteed to be PSD. This constraint over M can be
interpreted as a biased regularization w.r.t. MS .

The idea behind biased regularization has been suc-
cessfully used in many metric learning approaches. For
example, [ZMW+09] have proposed to replace the iden-
tity matrix (MS = I) originally used in ITML by ma-
trices previously learned on so called auxiliary data
sets. Similarly, in [PW10] the authors are interested in
Multi-Task metric learning. They propose to learn one
metric for each task and a global metric common to all
the tasks. For this global metric, they consider a biased
regularization of the form ‖M − I‖2F where I is the
identity matrix but they do not study any other kind
of source information. In [CYL13], the authors use a
similar biased regularization to learn a metric learning
model for face recognition. As a last example, [BYGP14]
introduce a regularization of the form ‖M−βI‖F where
they learn M and β. In our work, instead of optimizing
these two parameters, we derive a theoretically founded
algorithm to choose beforehand the optimal value of β.

3.2 Theoretical Frameworks in Metric
Learning

Theoretically speaking, there is not a lot of frame-
works for metric learning. The goal of generalization
guarantees is to show that the empirical estimation of
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the error of an algorithm does not deviate much from
the true error. One of the main difficulty in deriving
bounds for metric learning is the fact that instead of
considering examples drawn i.i.d. from a distribution,
we consider pairs of examples which might not be in-
dependent. Building upon the framework of stability
proposed in [BE02], [JWZ09] propose one of the first
study of the generalization ability of a metric learning
algorithm. Building upon this work, [PHMS14] give
theoretical guarantees for a local metric learning algo-
rithm and [BHS12] derive generalization guarantees for
a similarity learning algorithm. Other ways to derive
generalization guarantees are to use the Rademacher
complexity as in [CGY12, GY14] or to use the notion
of algorithmic robustness [BH15].

3.3 Biased Regularization in Supervi-
sed Learning

Biased regularization has already been studied in non
metric learning settings. For example in [KC06], the
authors propose to use biased regularization to learn
SVM classifiers. A first theoretical study of biased regu-
larization in the context of regularized least squares has
been proposed in [KO13]. Their study is based on a no-
tion of hypothesis stability less general than the uniform
stability used in our approach. In [KO14], the authors
derive generalization bounds based on the Rademacher
complexity for regularized empirical risk minimization
methods in a supervised learning setting. Their results
show that if the true risk of the source hypothesis on
the target domain is low, then the generalization rate
can be improved. However computing the true risk of
the source hypothesis is not possible in practice. In
our analysis, we derive a generalization bound which
depends on the empirical risk and the complexity (w.r.t.
the regularization term) of the source metric. It allows
us to derive an algorithm to minimize the generaliza-
tion bound taking into account the performance and
the complexity of the source metric.

4 Contribution

We divide our contribution consisting of a theoretical
analysis of Alg. 1 given convex, k-lipschitz and (σ,m)-
admissible losses into three parts. First, we provide
an on average analysis for ET [LDT (M∗)] where M∗

represents the metric learned with Alg. 1 using training
set T . This analysis allows us to bound the expected
loss over distribution DT with respect to the loss of
the auxiliary metric MS over DT . It shows that on

average the learned metric tends to be better than
the given source MS , with a fast convergence rate in
O(1/n). Second, we provide a consistency analysis of
our framework leading to a standard convergence rate

of O
(

1√
n

)
w.r.t the empirical loss over T optimized

in Alg. 1. In a third part, we specialize the previous
consistency result to a specific loss and show that it is
possible to refine our generalization bound in order to
depend both on the complexity of our source metric MS
and its empirical performance on the training set T . We
then deduce an approach to weight the importance of
the source hypothesis for optimizing the generalization
bound.

4.1 On average analysis

Def. 3 allows one to perform an average analysis over
the expected loss, however its formulation is not tailored
to metric learning approaches that work with pair of
examples. Thus we propose an adaptation of it that
we call on-average-replace-two-stability allowing one to
derive sharp bounds for metric learning.

Definition 5 (On-average-replace-two-stability). Let
ε : N → R be monotonically decreasing and let U(n)
be the uniform distribution over [n]. A metric learning
algorithm is on-average-replace-two-stable with rate ε(n)
if for every distribution DT

E T∼DT
n

i,j∼U(n)
z1,z2∼DT

[
l(Mij

∗
, zi, zj)− l(M∗, zi, zj)

]
≤ ε(n)

where M∗, respectively Mij
∗
, is the optimal solution

when learning with the training set T , respectively T i
j
.

T i
j

is obtained by replacing zi, the ith example of T ,
by z1 to get a training set T i and then by replacing zj,
the jth example of T i, by z2.

Note that when this definition is true, it implies
ET [LDT (M∗)− LT (M∗)] ≤ ε(n). The next theorem
shows that our algorithm is on-average-replace-two-
stable.

Theorem 1 (On-average-replace-two-stability). Given
a training sample T of size n drawn i.i.d. from DT , our
algorithm is on-average-replace-two-stable with ε(n) =
8k2

λn .

Démonstration. The proof of Th. 1 can be found in the
supplementary material.

We can now bound the expected true risk of our
algorithm.
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Theorem 2 (On average bound). For any convex, k-
lipschitz loss, we have :

ET∼DT n [LDT (M∗)] ≤ LDT (MS) +
8k2

λn

where the expected value is taken over size-n training
sets.

Démonstration. We have :

ET [LDT (M∗)]

= ET [LDT (M∗)] + ET [LT (M∗)]− ET [LT (M∗)]

= ET [LT (M∗)] + ET [LDT (M∗)− LT (M∗)]

≤ ET [LT (MS)] +
8k2

λn
. (2)

Inequality 2 is obtained by noting that from Th. 1

we have ET [LDT (M∗)− LT (M∗)] ≤ 8k2

λn , then the
convexity of our algorithm and the optimality of M∗

give LT (M∗) ≤ LT (M∗)+λ‖M∗−MS‖2F ≤ LT (MS)+
λ‖MS−MS‖2F . Noting that ET [LT (MS)] = LDT (MS)
gives the theorem.

This bound shows that with a sufficient number of
examples w.r.t. a fast convergence rate in O(1/n), we
will on average obtain a metric which is at least as good
as the source hypothesis. Thus choosing a good source
metric is key to learn well.

4.2 Consistency analysis

We now provide a consistency analysis taking into
account the empirical risk optimized in Alg. 1. We begin
by showing that our algorithm is uniformly stable w.r.t.
Def. 4 in the next theorem.

Theorem 3 (Uniform stability). Given a training
sample T of n examples drawn i.i.d. from DT , our

algorithm has a uniform stability in Kn with K = 4k2

λ .

Démonstration. The beginning of the proof follows clo-
sely the one proposed in [BE02] and is postponed to
the supplementary material for the sake of readability.
We consider the end of the proof here. We have

B ≤ 4kt

n
‖∆M‖F

where B = λ‖M −MS‖2F − λ‖M − t∆M −MS‖2F +
λ‖Mi −MS‖2F − λ‖Mi + t∆M−MS‖2F .

Setting t = 1
2 we have :

B = λ‖M−MS‖2F − λ‖M−
1

2
∆M−MS‖2F

+ λ‖Mi −MS‖2F − λ‖Mi +
1

2
∆M−MS‖2F

=λ
∑
k

∑
l

[
(Mkl −MSkl)

2 − (Mkl−
1

2
(Mkl−Mi

kl)−MSkl)
2

+(Mi
kl −MSkl)

2 − (Mi
kl +

1

2
(Mkl −Mi

kl)−MSkl)
2

]
=λ
∑
i

∑
j

[
(Mkl−MSkl)

2−(1
2
(Mkl−MSkl)+

1

2
(Mi

kl−MSkl))
2

+(Mi
kl −MSkl)

2 − (
1

2
(Mkl −MSkl) +

1

2
(Mi

kl −MSkl))
2

]
=λ
∑
i

∑
j

[
1

2
((Mkl −MSkl)

2

+(Mi
kl −MSkl)

2 − 2(Mkl −MSkl)(M
i
kl −MSkl))

]
=λ
∑
i

∑
j

[
1

2
(Mkl −MSkl −Mi

kl −MSkl)
2

]
=
λ

2
‖∆M‖2F .

Then we obtain

λ

2
‖∆M‖2F ≤

4k

2n
‖∆M‖F ⇔ ‖∆M‖F ≤

4k

λn
.

Using the k-lipschitz continuity of the loss, we have :

sup
z,z′
|l(M, z, z′)− l(Mi, z, z′)| ≤ k‖∆M‖F ≤

4k2

λn
.

Setting K = 4k2

λ concludes the proof.

Using the fact that our algorithm is uniformly stable,
we can derive generalization guarantees as stated in
Th. 4.

Theorem 4 (Generalization bound). With probability
1− δ, for any matrix M learned with our K uniformly
stable algorithm and for any convex, k-lipschitz and
(σ,m)-admissible loss, we have :

LDT (M) ≤ LT (M)+(4σ + 2m+ c)O
(

1√
n

)
+O

(
1

n

)
where c is a constant linked to the k-lipschitz property
of the loss.

Démonstration. The proof of this theorem is available
in the supplementary material.

This bound shows that with a convergence rate in

O
(

1√
n

)
the true risk of our algorithm is bounded above

by the empirical risk justifying the consistency of the
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approach. In the next section, we propose an extension
of this analysis to include the performance of the source
metric. This extension allows us to introduce a natural
weighting of the source metric in order to improve the
proposed bound.

4.3 Refinement with weighted source
hypothesis

In this part we study a specific loss, namely
l(M, z, z′) =

[
yy′((x− x′)TM(x− x′)− γyy′)

]
+

where

yy′ = 1 if y = y′ and −1 otherwise. The convexity fol-
lows from the use of the hinge loss. In the next two
lemmas, we show that this loss is k-lipschitz continuous
and (σ,m)-admissible. The (σ,m)-admissibility result
is of high importance because it allows us to introduce
some information coming from the source matrix MS .

Lemma 1 (k-lipschitz continuity). Let M and M′

be two matrices and z, z′ be two examples. Our
loss l(M, z, z′) is k-lipschitz continuous with k =
maxx,x′ ‖x− x′‖2.

Démonstration. The interested reader can find the
proof of this lemma in the supplementary material.

Lemma 2 ((σ,m)-admissibility). Let z1, z2, z3, z4
be four examples and M∗ be the optimal solu-
tion of Problem 1. The convex and k-lipschitz loss
function l(M, z, z′) is (σ,m)-admissible with σ =
max(γy3y4 , γy1y2) and

m = 2 maxx,x′ ‖x− x′‖2 (
√

LT (MS)
λ + ‖MS‖F ).

Démonstration. Let ε∗ = M∗ −MS be the difference
between the learned metric and the source metric. We
first bound the frobenius norm of ε∗ w.r.t. the perfor-
mance of the source metric.

LT (M
∗)+λ‖M∗−MS‖2F ≤ LT (MS) + λ‖MS −MS‖2F

⇒ λ‖ε∗‖2F ≤ LT (MS)⇔ ‖ε∗‖F ≤
√
LT (MS)

λ

Now we can prove the (σ,m)-admissibility of our loss.

|l(M∗, z1, z2)− l(M∗, z3, z4)|

=|
[
y1y2((x1 − x2)

TM∗(x1 − x2)− γy1y2)
]
+

−
[
y3y4((x3 − x4)

TM∗(x3 − x4)− γy3y4)
]
+
|

≤|y1y2((x1 − x2)
TM∗(x1 − x2)− γy1y2)

− y3y4((x3 − x4)
TM∗(x3 − x4)− γy3y4)| (3)

≤|y1y2(x1 − x2)
TM∗(x1 − x2)

− y3y4(x3 − x4)
TM∗(x3 − x4)|

+ |y3y4γy3y4 − y1y2γy1y2 |

≤2max
x,x′

((x− x′)TM∗(x− x′))

+ |y3y4 − y1y2|max(γy3y4 , γy1y2)

≤2max
x,x′

((x− x′)T (ε∗ + MS)(x− x′))

+ |y3y4 − y1y2|max(γy3y4 , γy1y2)

≤2max
x,x′
‖x− x′‖2(‖ε∗‖F + ‖MS‖F )

+ |y3y4 − y1y2|max(γy3y4 , γy1y2) (4)

≤2max
x,x′
‖x− x′‖2(

√
LT (MS)

λ
+ ‖MS‖F )

+ |y3y4 − y1y2|max(γy3y4 , γy1y2)

Inequality 3 comes from the 1-lipschitz property of
the hinge loss. We obtain inequality 4 by applying
the Cauchy-Schwarz inequality and some classical norm

properties. Setting m = 2 maxx,x′ ‖x−x′‖2(
√

LT (MS)
λ +

‖MS‖F ) and σ = max(γy3y4 , γy1y2) gives the lemma.

Using Lemmas 1 and 2 we can now derive, in Th. 5,
a generalization bound associated with our specific loss.

Theorem 5 (Generalization bound). With probability
1− δ for any matrix M learned with Alg. 1, we have :

LDT (M) ≤LT (M) +O
(

1

n

)
+

(√
LT (MS)

λ
+ ‖MS‖F + cγ

)
O
(

1√
n

)
where cγ is a constant linked to the k-lipschitz property
of the loss and the chosen margins.

Démonstration. The proof is the same as for Th. 4
replacing k, σ and m by their values.

As for Th. 4, the convergence rate is in O
(

1√
n

)
. The

term C(MS)
def
=

(√
LT (MS)

λ + ‖MS‖F
)

mainly de-

pends on the quality of the source hypothesis MS . The
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product C(MS)O
(

1√
n

)
means that as the number of

examples available for learning increases, the quality of
the source metric is of decreasing importance. A similar
result has already been stated in domain adaptation or
transfer learning in [BBC+10, KO13] where they show
that as the number of target examples increases, the
necessity of having source examples decreases.

Given a source hypothesis MS , it is possible to opti-
mize it w.r.t. the bound derived in Th. 5. Indeed, note

that the term C(MS) =

(√
LT (MS)

λ + ‖MS‖F
)

cor-

responds to a trade-off between the complexity of the
source metric and its performance on the training set.
The lower the value of this term, the tighter the bound.
Hence, we propose a way to minimize the generalization
bound and more specifically C(MS) by adding a weigh-
ting parameter β ≥ 0 on the source metric MS . This
parameter is a way to control the trade-off between
complexity and performance of the source metric. It
can be assessed by means of the following optimization
problem :

β∗ = arg min
β

C(βMS) (5)

Note that the bound derived in Th. 5 holds whatever
the value of MS . Thus replacing it with β∗MS does not
impact the theoretical study proposed in this section.

Interpretation of the value of β∗ We can distin-
guish three main cases. First if the source hypothesis
performs poorly on the training set at hand we expect
β∗ to be as small as possible to reduce the importance
of MS . In a sense, we tend to go back to the classical
case were MS = 0. Second if the source hypothesis is
complex and performs well, we expect β∗ to be rather
small to reduce the complexity of the hypothesis while
keeping a good performance on the training set. Third
if the source hypothesis is simple and performs well,
we expect β∗ to be closer to one since MS is already a
good choice.

Learning β∗ Problem 5 is highly non differentiable 2

and non convex. However, it remains simple in the sense
that we have only one parameter to assess and we used
a classical subgradient descent to solve it. Even if it
is not convex, our empirical study shows no need to
perform many restarts to output a good solution : we
always found almost the same solution. As a conse-
quence, we applied only one optimization procedure in
our experiments.

2. To avoid this problem, we can use the classical relaxation
with slack variables.

In this section we presented a new framework for me-
tric learning where one can use a source hypothesis to
add some side information during the learning process.
We have shown that our approach is consistent with

a convergence rate in O
(

1√
n

)
. Furthermore, given a

specific loss, we have shown that the use of a weigh-
ting parameter to control the importance of the source
metric is theoretically founded. In the next part we em-
pirically demonstrate that we can obtain competitive
results both in a classical metric learning setting and
in a domain adaptation setting.

5 Experiments

We propose an empirical study according to two direc-
tions depending on the choice of the source metric. First,
using some well-known distances as a source metric, we
show that our framework performs well on classical
supervised metric learning tasks of the UCI database
and we empirically demonstrate the interest of learning
the β parameter. Second, we apply our framework in
a semi-supervised Domain Adaptation task. We show
that, using only source information through a learned
metric, our method is able to compete with state of the
art algorithms.

Setup In all our experiments we use limited training
dataset, making it difficult to apply any kind of cross-
validation to set the parameters. Thus we propose to fix
them as follows. First the positive and negative margin
are respectively set to the 5th and 95th percentile of
the training set possible distances computed with the
source metric as proposed in [DKJ+07]. Next we set
λ such that the two terms of Eq. 5 are equals, i.e. we
balance the complexity and performance importance
with respect to the source metric. The β parameter is
then learned using Algorithm 5. In all the experiments
we plug our metric in a 1-nearest neighbour classifier
to classify the examples of the test set.

Breast Pima Scale Wine
# of examples 683 768 625 178

# of classes 2 2 3 3
# of features 9 8 4 13

Table 2 – Characteristics of four UCI datasets.

7



Baselines Our approach
Dataset 1-NN ITML LMNN IDENTITY IDENTITY-B1 MAHALANOBIS MAHALANOBIS-B1
Breast 95.31 ± 1.11 95.40 ± 1.37 95.60 ± 0.92 96.06 ± 0.77 95.75 ± 0.87 95.71 ± 0.84 94.76 ± 1.38
Pima 67.92 ± 1.95 68.13 ± 1.86 67.90 ± 2.05 67.87 ± 1.57 67.54 ± 1.99 68.37 ± 2.00 66.31 ± 2.37
Scale 78.73 ± 1.69 87.31 ± 2.35 86.20 ± 2.83 80.98 ± 1.51 80.82 ± 1.27 81.35 ± 1.17 80.88 ± 1.43
Wine 93.40 ± 2.70 93.82 ± 2.63 93.47 ± 1.80 95.42 ± 1.71 95.07 ± 1.68 94.31 ± 2.01 80.56 ± 5.75

Table 1 – Results of the experiments conducted on the UCI datasets. Each value corresponds to the mean and
standard deviation over 10 runs. For each dataset we highlight the best result using a bold font. Approaches
with the suffix -B1 do not learn β, it is fixed to 1.

5.1 Classical Supervised Metric Lear-
ning

First we start by conducting experiments on several
UCI datasets, namely breast, pima, scale and wine. The
characteristics of these datasets are reported in Table 2.
We propose to consider three source metrics : (i) Zero :
No source hypothesis, (ii) Identity : Euclidean distance,
(iii) Mahalanobis : Inverse of the variance-covariance
matrix computed on the training set.

For the last two hypothesis we propose two experi-
ments, one where we set β = 1 and one where we learn
β using Algorithm 5. The goal of this experiment is to
show the interest of automatically setting β. We consi-
der a 1-nearest neighbour (1-NN) classifier using the
Euclidean Distance as the baseline and also report the
results of two well known metric learning algorithms,
namely ITML, [DKJ+07] and LMNN [WBS05]. The re-
sults averaged over 10 runs are reported in Table 1. For
each run we randomly draw a training set containing
20% of the data available for each class and we test the
metric on the remaining 80% of data.

These experiments highlight the interest of learning
the β parameter. When we consider the performance of
our approach with and without learning β, we mainly
notice the following facts. First, learning β always leads
to an improvement on all the datasets and the final re-
sult is better than the 1NN classifier. Second, learning
β when considering the identity matrix as the source
metric seems to be of limited interest. This can be jus-
tified by the fact that, in this case, it only consists of a
rescaling of the diagonal of the matrix which does not
change much the behaviour of the distance on the data-
set. Finally, learning β when considering the variance-
covariance matrix as the source metric leads to a signi-
ficant improvement of the performance of the metric.
This is particularly true for the wine dataset with a
gain of nearly 14% in accuracy. It can be explained
by the fact that, for this dataset, we are learning with
less than 40 examples. Thus the original Mahalanobis
distance does not carry as much information as in the
other datasets and is thus of a lower quality. Learning

β allows us to compensate this drawback and to obtain
results which are even better than ITML or LMNN.

5.2 Metric learning for Semi-
supervised Domain Adaptation

In this section we consider a Semi-supervised Domain
Adaptation task with the Office-Caltech dataset. This
dataset consists of four domains : Amazon (A), Cal-
tech (C), DSLR (D) and Webcam (W) for which we
consider 10 classes. This leads to consider 12 different
adaptation problems when we alternatively take each
domain as the source or the target dataset. In these
experiments we use the same splits as the ones consi-
dered in [HRD+13] since they are freely available from
the authors website and follow their experimental setup.
The results averaged over 20 runs and for each run 8
labelled source examples (20 if the source is Amazon)
and 3 labelled target examples are selected. The data is
normalized thanks to the zscore and the dimensionality
is reduced to 20 thanks to a simple PCA. The results
are presented in Table 3 where we compare the perfor-
mance of our algorithm to 6 baselines : (i) 1-NNS : a
1-NN using the source examples, (ii) 1-NNT : a 1-NN
using the target examples, (iii) LMNNT : a 1-NN on
the target examples using the metric learned by LMNN
on the source examples, (iv) ITMLT : a 1-NN on the
target examples using the metric learned by ITML on
the source examples, (v) MMDT : a domain adapta-
tion method [HRD+13], (vi) GFK : another domain
adaptation approach [GSSG12].

The last two methods need the source sample while
in our case we only use a source metric learned from
the source instances. We consider 3 possible source
metrics for our biased regularization framework : (i)
Mahalanobis : Inverse of the variance-covariance matrix
computed on the source examples, (ii) LMNN : the
metric learned by LMNN on the source examples, (iii)
ITML : the metric learned by ITML on the source
examples.

These results show that metric hypothesis transfer
learning can perform well in a Semi-supervised Domain
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Baselines Our approach
Task 1-NNS 1-NNT LMNNT ITMLT MMDT GFK MAHALANOBIS ITML LMNN

A → C 35.95 ± 1.30 31.92 ± 3.24 32.42 ± 3.03 32.56 ± 4.17 39.76 ± 2.25 37.81 ± 1.85 32.65 ± 3.76 32.93 ± 4.60 34.66 ± 3.66
A → D 33.58 ± 4.37 53.31 ± 4.31 49.96 ± 3.53 44.33 ± 8.18 54.25 ± 4.32 51.54 ± 3.55 54.69 ± 3.96 51.54 ± 4.03 54.72 ± 5.00
A → W 33.68 ± 3.60 66.25 ± 3.87 62.62 ± 4.49 58.17 ± 10.63 64.91 ± 5.71 59.36 ± 4.30 67.11 ± 5.11 64.09 ± 5.20 67.62 ± 5.18
C → A 37.37 ± 2.95 47.28 ± 4.15 42.97 ± 3.76 45.16 ± 7.60 51.05 ± 3.38 46.36 ± 2.94 50.15 ± 4.87 49.89 ± 5.25 50.36 ± 4.67
C → D 31.89 ± 5.77 54.17 ± 4.76 46.02 ± 6.54 48.07 ± 8.98 52.80 ± 4.84 58.07 ± 3.90 56.77 ± 4.63 53.78 ± 7.23 57.44 ± 4.48
C → W 28.60 ± 6.13 65.06 ± 6.27 55.79 ± 5.09 59.21 ± 9.71 62.75 ± 5.19 63.26 ± 5.89 64.64 ± 6.44 64.00 ± 6.08 65.11 ± 5.25
D → A 33.59 ± 1.77 47.81 ± 3.56 40.57 ± 3.79 45.06 ± 6.78 50.39 ± 3.40 40.77 ± 2.55 49.48 ± 4.41 49.11 ± 4.09 49.67 ± 4.00
D → C 31.16 ± 1.19 32.22 ± 2.98 27.96 ± 3.03 29.93 ± 4.84 35.70 ± 3.25 30.64 ± 1.98 32.90 ± 3.14 32.99 ± 3.58 33.84 ± 2.99
D → W 76.92 ± 2.18 66.19 ± 4.60 65.36 ± 3.82 66.74 ± 7.16 74.43 ± 3.10 74.98 ± 2.89 65.57 ± 4.52 66.38 ± 6.04 69.72 ± 3.78
W → A 32.19 ± 3.04 48.25 ± 3.52 41.69 ± 3.71 45.11 ± 5.72 50.56 ± 3.66 43.26 ± 2.34 50.80 ± 3.63 50.16 ± 4.32 50.92 ± 4.00
W → C 27.67 ± 2.58 30.74 ± 3.92 28.60 ± 3.41 28.99 ± 4.31 34.86 ± 3.62 29.95 ± 3.05 31.54 ± 3.60 31.40 ± 4.29 32.64 ± 3.52
W → D 64.61 ± 4.30 54.84 ± 5.17 56.89 ± 5.06 57.76 ± 7.03 62.52 ± 4.40 71.93 ± 4.07 57.17 ± 6.50 56.85 ± 5.51 61.14 ± 5.78
Mean 38.93 ± 3.26 49.84 ± 4.20 45.90 ± 4.11 46.76 ± 7.09 52.83 ± 3.93 50.66 ± 3.28 51.12 ± 4.55 50.26 ± 5.02 52.32 ± 4.36

Table 3 – Metric Learning for Semi-Supervised Domain Adaptation. For the sake of readability we design
the considered domains by their initials. S → T stands for adaptation from the source domain to the target
domain. Each time we consider the mean and standard deviation over 20 runs. For each task, the best result is
highlighted with a bold font.

Adaptation setting. Indeed, we obtain accuracies which
are competitive with state of the art approaches like
MMDT or GFK while using less information. Moreo-
ver we also perform better than directly plugging the
metrics learned by LMNN and ITML in a 1-nearest
neighbour classifier.

If we compare the performances of both ITML and
LMNN as metrics used directly in a nearest neighbour
classifier one can intuitively expect ITML to be a better
source hypothesis than LMNN. However, in practice
using the metric learned by LMNN as the source hypo-
thesis yields better results. This suggests that using a
learned source model that tends to overfit reasonably
the learning source sample can be of potential interest
in a transfer learning context. Indeed LMNN does not
use a regularization term in its formulation and it is
well know that LMNN is prone to overfitting. Since,
the parameter β penalizes the source metric w.r.t. its
complexity it may limit the impact of the source metric
to what is needed for the transfer. Nevertheless, this
point deserves further investigation.

6 Conclusion

In this paper we presented a new theoretical analysis
for metric hypothesis transfer learning. This framework
takes into account a source hypothesis information to
help learning by means of a biased regularization. This
biased regularization can be interpreted into two ways :
(i) when the source metric is an a priori known metric
such as the identity matrix, the objective is to infer
a new metric that performs better than the source
metric, (ii) when the source metric has been learned
from another domain, the formulation allows one to

transfer the knowledge from the source metric to the
new domain. This last interpretation refers to a transfer
learning setting where the learner does not have access
to source examples and can only make use of the source
model in the presence of few labelled data.

Our analysis has shown that this framework is theore-
tically well founded and that a good source hypothesis
can facilitate fast generalization in O(1/n). Moreover,
we have provided a consistency analysis from which we
have developed a generalization bound able to consider
both the performance and the complexity of the source
hypothesis. This has led to the use of weighted source
hypothesis to optimize the bound in a theoretically
sound way.

As stated in [KO14] in another context, our results
stress the importance of choosing good source hypothe-
sis. However, choosing the best source metric from few
labelled data is a difficult problem of crucial importance.
One perpective could be to consider notions of reverse
validations as used in some transfer learning/domain
adaptation tasks [BM10, ZFY+10]. Another perspec-
tive would be to extend our framework to other settings
and other kind of regularizers.
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