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1 Overview

This supplementary material is organised into three parts. In the first two parts we respectively state the
proofs of the on-average and uniform stability analysis. In the last part, we show that the specific loss presented
in the paper is k-lipschitz.

For the sake of readability we start by recalling our setting. Let T be a training set drawn from a distribution
DT over X × Y. We consider the following framework for biased regularization metric learning :

M∗ = arg min
M�0

LT (M) + λ‖M−MS‖F (1)

where LT (M) = 1
n2

∑
z,z′∈T l(M, z, z′) stands for the empirical risk of hypothesis M. Similarly we denote the

true risk by LDT (M) = Ez,z′∼DT l(M, z, z′). We only consider convex, k-lipschitz and (σ,m)-admissible losses.

2 On-average-replace-two-stability analysis

In this part we show that our algorithm is on-average-replace-two-stable. For the sake of completeness, we
also recall the proof of the bound already presented in the paper.

First we show in the following lemma that our algorithm is strongly convex. Before proving this result, we
recall the definition of strong convexity.

Definition 1. A function f is λ-strongly convex if for all w, u, and α ∈ [0, 1] we have :

f(αw + (1− α)u) ≤ αf(w) + (1− α)f(u)− λ

2
α(1− α)‖w − u‖2.

We can now state the lemma.

Lemma 1. The algorithm presented in Eq.1 is 2λ-strongly convex.

Démonstration. First we show that the regularization term λ‖M−MS‖2F is 2λ-strongly convex in M :

λ‖α(M) + (1− α)(M′)−MS‖2F
= λ‖α(M−MS) + (1− α)(M′ −MS)‖2F
≤ λα‖M−MS‖2F + λ(1− α)‖M′ −MS‖2F − λα(1− α)‖M−MS −M′ + MS‖2F (2)

≤ λα‖M−MS‖2F + λ(1− α)‖M′ −MS‖2F − λα(1− α)‖M−M′‖2F
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Eq. 2 comes from the strong convexity of the squared Frobenius norm.
The regularization term is 2λ-strongly convex and LT (M) is convex since it a sum of convex functions. Thus

our algorithm is 2λ-strongly convex because it is a sum of a 2λ-strongly convex and a convex function.

We can now show the on-average-replace-two-stability of our algorithm.

Theorem 1 (On-average-replace-two-stability). Given a training sample T of n examples drawn i.i.d. from DT ,

our algorithm is on-average-replace-two-stable with ε(n) = 8k2

λn .

Démonstration. Let M∗, respectively Mij
∗
, be the optimal solution when learning with the training set T ,

respectively T i
j
. Let zk, z

i
k, z

i
k
j

respectively be the kth examples of training sets T, T i, T i
j
. We have :

LT (Mij
∗
) + λ‖Mij

∗
−MS‖2F − (LT (M∗) + λ‖M∗ −MS‖2F )

= LT i(Mij
∗
) + λ‖Mij

∗
−MS‖2F − (LT i(M∗) + λ‖M∗ −MS‖2F )

+

∑
k l(M

ij
∗
, zk, zi)− l(M∗, zk, zi)

n2
+

∑
l l(M

ij
∗
, zi, zl)− l(M∗, zi, zl)

n2

+

∑
k l(M

∗, zik, z
i
i)− l(Mij

∗
, zik, z

i
i)

n2
+

∑
l l(M

∗, zii, z
i
l)− l(Mij

∗
, zii, z

i
l)

n2
(3)

= LT ij (Mij
∗
) + λ‖Mij

∗
−MS‖2F − (LT ij (M∗) + λ‖M∗ −MS‖2F )

+

∑
k l(M

ij
∗
, zk, zi)− l(M∗, zk, zi)

n2
+

∑
l l(M

ij
∗
, zi, zl)− l(M∗, zi, zl)

n2

+

∑
k l(M

∗, zik, z
i
i)− l(Mij

∗
, zik, z

i
i)

n2
+

∑
l l(M

∗, zii, z
i
l)− l(Mij

∗
, zii, z

i
l)

n2

+

∑
k l(M

ij
∗
, zik, z

i
j)− l(M∗, zik, z

i
j)

n2
+

∑
l l(M

ij
∗
, zij , z

i
l)− l(M∗, zij , z

i
l)

n2

+

∑
k l(M

∗, zik
j
, zij

j
)− l(Mij

∗
, zik

j
, zij

j
)

n2
+

∑
l l(M

∗, zij
j
, zil

j
)− l(Mij

∗
, zij

j
, zil

j
)

n2
(4)

≤ LT ij (Mij
∗
) + λ‖Mij

∗
−MS‖2F − (LT ij (M∗) + λ‖M∗ −MS‖2F ) +

8k‖Mij
∗
−M∗‖F
n

(5)

≤ 8k‖Mij
∗
−M∗‖F
n

(6)

Equalities (3) and (4) are obtained by successively adding and removing similar terms. Inequality (5) is due

to the k-lipschitz property of the loss. Inequality (6) is obtained by noticing that Mij
∗

is the minimizer of our

algorithm when learning with training set T i
j
.

Furthermore, from the 2λ-strong convexity of our algorithm, proved in Lemma 1, we have :

LT (Mij
∗
) + λ‖Mij

∗
−MS‖2F − (LT (M∗) + λ‖M∗ −MS‖2F ) ≥ λ‖Mij

∗
−M∗‖2F .

Thus we obtain :

λ‖Mij
∗
−M∗‖2F ≤

8k‖Mij
∗
−M∗‖F
n

⇒ ‖Mij
∗
−M∗‖F ≤

8k

λn

V
∣∣∣l(Mij

∗
, zi, zj)− l(M∗, zi, zj)

∣∣∣ ≤ k‖Mij
∗
−M∗‖F ≤

8k2

λn
.

(7)
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The last inequality is obtained thanks to the k-lipschitz property of the loss. Taking the expectation of both
sides gives the theorem.

Using the on-average-replace-two-stability property of our algorithm, we derive our first bound.

Theorem 2 (On average bound). For any convex, k-lipschitz loss, we have :

ET [LDT (M∗)] ≤ LDT (MS) +
8k2

λn

where the expected value is taken over training sets of size n.

Démonstration. We have :

ET [LDT (M∗)]

= ET [LDT (M∗)] + ET [LT (M∗)]− ET [LT (M∗)]

= ET [LT (M∗)] + ET [LDT (M∗)− LT (M∗)]

≤ ET [LT (M∗)] +
8k2

λn
(8)

≤ ET [LT (MS)] +
8k2

λn
(9)

Inequality 8 is obtained by noting that from Th. 1 we have ET [LDT (M∗)− LT (M∗)] ≤ 8k2

λn . Inequality 9 comes
from the convexity of our algorithm which gives LT (M∗) ≤ LT (M∗)+λ‖M∗−MS‖2F ≤ LT (MS)+λ‖MS−MS‖2F .
Noting that ET [LT (MS)] = LDT (MS) gives the theorem.

3 Uniform stability analysis

In this second part, we show that our algorithm is uniformly stable before proving the generalization bound
presented in the paper.

Theorem 3 (Uniform stability). Given a training sample T of n examples drawn i.i.d. from DT , our algorithm

has a uniform stability in Kn with K = 4k2

λ .

Démonstration. Let ∆M = M−Mi where M is the optimal solution when learning with set T and Mi is the
optimal solution when learning with set T i. The empirical risk is convex by sum of convex functions, thus

LT i(M− t∆M)− LT i(M) ≤ t(LT i(Mi)− LT i(M))

LT i(Mi + t∆M)− LT i(Mi) ≤ t(LT i(M)− LT i(Mi))

Summing up the two inequalities gives :

LT i(M− t∆M)− LT i(M) + LT i(Mi + t∆M)− LT i(Mi) ≤ 0. (10)

Our algorithm is convex as stated in Lemma 1, thus :

LT (M) + λ‖M−MS‖2F − LT (M− t∆M)− λ‖M− t∆M−MS‖2F
+ LT i(Mi) + λ‖Mi −MS‖2F − LT i(Mi + t∆M)− λ‖Mi + t∆M−MS‖2F ≤ 0. (11)

And thus summing inequalities 10 and 11 gives :

LT (M)− LT i(M) + LT i(M− t∆M)− LT (M− t∆M)

+ λ‖M−MS‖2F − λ‖M− t∆M−MS‖2F + λ‖Mi −MS‖2F − λ‖Mi + t∆M−MS‖2F ≤ 0. (12)
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Let B = λ‖M−MS‖2F − λ‖M− t∆M−MS‖2F + λ‖Mi −MS‖2F − λ‖Mi + t∆M−MS‖2F , we have :

B ≤| − LT (M) + LT i(M)− LT i(M− t∆M) + LT (M− t∆M)|

≤ 1

n2
|
∑
j

∑
k

l(M− t∆M, zj , zk)− l(M− t∆M, zij , z
i
k) + l(M, zij , z

i
k)− l(M, zj , zk)|

≤ 1

n2
|
∑
j

l(M− t∆M, zj , zi)− l(M− t∆M, zij , z
i
i) + l(M, zij , z

i
i)− l(M, zj , zi)

+
∑
k

l(M− t∆M, zi, zk)− l(M− t∆M, zii, z
i
k) + l(M, zii, z

i
k)− l(M, zi, zk)|

≤ 1

n2

∑
j

|l(M− t∆M, zj , zi)− l(M, zj , zi)|+
∑
j

|l(M, zij , z
i
i)− l(M− t∆M, zij , z

i
i)|

+
∑
k

|l(M− t∆M, zi, zk)− l(M, zi, zk)|+
∑
k

|l(M, zii, z
i
k)− l(M− t∆M, zii, z

i
k)|

)

≤nk
n2

(‖M− t∆M−M‖F + ‖M−M + t∆M‖F + ‖M− t∆M−M‖F + ‖M−M + t∆M‖F )

≤4kt

n
‖∆M‖F

Furthermore, setting t = 1
2 , we have

B =λ‖M−MS‖2F − λ‖M−
1

2
∆M−MS‖2F + λ‖Mi −MS‖2F − λ‖Mi +

1

2
∆M−MS‖2F

=λ
∑
k

∑
l

[
(Mkl −MSkl)

2 − (Mkl −
1

2
(Mkl −Mi

kl)−MSkl)
2 + (Mi

kl −MSkl)
2

− (Mi
kl +

1

2
(Mkl −Mi

kl)−MSkl)
2

]
=λ
∑
k

∑
l

[
(Mkl −MSkl)

2 − (
1

2
Mkl +

1

2
Mi

kl −MSkl)
2 + (Mi

kl −MSkl)
2 − (

1

2
Mkl +

1

2
Mi

kl −MSkl)
2

]
=λ
∑
i

∑
j

[
(Mkl −MSkl)

2 − (
1

2
(Mkl −MSkl) +

1

2
(Mi

kl −MSkl))
2 + (Mi

kl −MSkl)
2

− (
1

2
(Mkl −MSkl) +

1

2
(Mi

kl −MSkl))
2

]
=λ
∑
i

∑
j

[
1

2
((Mkl −MSkl)

2 + (Mi
kl −MSkl)

2 − 2(Mkl −MSkl)(M
i
kl −MSkl))

]

=λ
∑
i

∑
j

[
1

2
(Mkl −MSkl −Mi

kl −MSkl)
2

]
=
λ

2
‖∆M‖2F .

Then we obtain :

λ

2
‖∆M‖2F ≤

4k

2n
‖∆M‖F

⇔ ‖∆M‖F ≤
4k

λn
.
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Using the k-lipschitz continuity of the loss, we have :

sup
z,z′
|l(M, z, z′)− l(Mi, z, z′)| ≤ ‖∆M‖F ≤

4k2

λn
.

Setting K = 4k2

λ concludes the proof.

We now recall the McDiarmid inequality [McD89], used to prove our main theorem.

Theorem 4 (McDiarmid inequality). Let X1, ..., Xn be n independent random variables taking values in X and
let Z = f(X1, ..., Xn). If for each 1 ≤ i ≤ n, there exists a constant ci such that

sup
x1,...,xn,x′

i∈X
|f(x1, ..., xn)− f(x1, ..., x

′
i, ..., xn)| ≤ ci,∀1 ≤ i ≤ n,

then for any ε > 0,Pr [|Z − E [Z]| ≥ ε] ≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)
.

Using Th. 3 which state the uniform stability of our algorithm and the McDiarmid inequality we can derive
our generalization bound. For this purpose, we replace Z by RT = LDT (M∗)− LT (M∗) in Theorem 4 and we
need to bound ET [RT ] and |RT −RT i |, which is done in the following two lemmas.

Lemma 2. For any learning method of estimation error RT and satisfying a uniform stability in Kn , we have

ET [RT ] ≤ 2K
n

.

Démonstration.

ET [RT ] ≤ ET [LDT (M∗)− LT (M∗)]

≤ ET,z,z′∼DT

∣∣∣∣∣∣l(M∗, z, z′)− 1

n2

∑
i

∑
j

l(M∗, zi, zj)

∣∣∣∣∣∣


≤ ET,z,z′∼DT

∣∣∣∣∣∣ 1

n2

∑
i

∑
j

l(M∗, z, z′)− l(Mi∗, zi, zj) + l(Mi∗, zi, zj)− l(M∗, zi, zj)

∣∣∣∣∣∣


≤ ET,z,z′∼DT

∣∣∣∣∣∣ 1

n2

∑
i

∑
j

l(Mij
∗
, zi, zj)− l(Mi∗, zi, zj) + l(Mi∗, zi, zj)− l(M∗, zi, zj)

∣∣∣∣∣∣
 (13)

≤ ET,z,z′∼DT

 1

n2

∑
i

∑
j

∣∣∣l(Mij
∗
, zi, zj)− l(Mi∗, zi, zj)

∣∣∣+
1

n2

∑
i

∑
j

∣∣∣l(Mi∗, zi, zj)− l(M∗, zi, zj)
∣∣∣


(14)

≤ 2K
n

(15)

Inequality (13) comes from the fact that T, z, z′ are drawn i.i.d. from the distribution DT and thus we do not
change the expected value by replacing one example with another. Inequality (14) is obtained by applying
triangle inequality. The lemma comes from applying the property of uniform stability twice (Th. 3).

Lemma 3. For any matrix M∗ learned by our algorithm using n training examples, and any loss function l
satisfying the (σ,m)-admissibility, we have

|RT −RT i | ≤ 2K + (4σ + 2m)

n
.
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Démonstration.

|RT −RT i | =
∣∣∣LDT (M∗)− LT (M∗)− (LDT (Mi∗)− LT i(Mi∗))

∣∣∣
=
∣∣∣LDT (M∗)− LDT (Mi∗) + LT i(Mi∗)− LT i(M∗) + LT i(M∗)− LT (M∗)

∣∣∣
≤
∣∣∣LDT (M∗)− LDT (Mi∗)

∣∣∣+
∣∣∣LT i(Mi∗)− LT i(M∗)

∣∣∣+ |LT i(M∗)− LT (M∗)| (16)

≤ 2K
n

+

∣∣∣∣∣∣ 1

n2

∑
j

∑
k

l(M∗, zij , z
i
k)− l(M∗, zj , zk)

∣∣∣∣∣∣ (17)

≤ 2K
n

+

∣∣∣∣∣∣ 1

n2

∑
j

l(M∗, zij , z
i
i)− l(M∗, zj , zi) +

1

n2

∑
j

l(M∗, zii, z
i
k)− l(M∗, zi, zk)

∣∣∣∣∣∣ (18)

≤ 2K
n

+
1

n2

∑
j

∣∣l(M∗, zij , z
i
i)− l(M∗, zj , zi)

∣∣+
1

n2

∑
k

∣∣l(M∗, zii, z
i
k)− l(M∗, zi, zk)

∣∣ (19)

≤ 2K
n

+
2(2σ +m)

n
(20)

(21)

Inequalities (16) and (19) are due to the triangle inequality. (17) comes from the application of uniform
stability (Th. 3). (18) comes from the fact that T and T i only differ by their ith example. (20) comes from the
(σ,m)-admissibility of the loss and the fact that |y1y2 − y3y4| ≤ 2.

We are now ready to prove our generalization bound.

Theorem 5 (Generalization bound). With probability 1− δ, for any matrix M learned with our K uniformly
stable algorithm and for any convex, k-lipschitz and (σ,m)-admissible loss, we have :

LDT (M) ≤ LT (M) + (4σ + 2m+ c)O
(

1√
n

)
+O

(
1

n

)
where c is a constant linked to the k-lipschitz property of the loss.

Démonstration. Using the McDiarmid inequality (Th. 4) and Lemma 3 we have :

Pr [|RT − ET [RT ]| ≥ ε] ≤ 2 exp

(
− 2ε2∑n

i=1

(
2K+4σ+2m

n

)2
)

≤ 2 exp

(
− 2ε2

1
n (2K + 4σ + 2m)

2

)
.

Then, by setting :

δ = 2 exp

(
− 2ε2

1
n (2K + 4σ + 2m)

2

)
we obtain :

ε = (2K + 4σ + 2m)

√
ln
(
2
δ

)
2n

and thus :

Pr [|RT − ET [RT ]| < ε] > 1− δ.
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Then, with probability 1− δ :

RT < ET [RT ] + ε

⇔ LDT (M∗)− LT (M∗) < ET [RT ] + ε

V LDT (M∗) < LT (M∗) +
2K
n

+ (2K + 4σ + 2m)

√
ln
(
2
δ

)
2n

.

The last inequality is obtained using Lem. 2 and replacing ε by its value.

4 Specific loss

We show the k-lipschitz property of our loss.

Lemma 4 (k-lipschitz continuity). Let M and M′ be two matrices and z, z′ be two examples. Our loss l(M, z, z′)
is k-lipschitz continuous with k = maxx,x′ ‖x− x′‖2.

Démonstration.

|l(M, z, z′)− l(M′, z, z′)| = |
[
yy′((x− x′)TM(x− x′)− γyy′)

]
+
−
[
yy′((x− x′)TM′(x− x′)− γyy′)

]
+
|

≤ |yy′((x− x′)TM(x− x′)− γyy′)− yy′((x− x′)TM′(x− x′)− γyy′)|
≤ |yy′(x− x′)TM(x− x′)− yy′(x− x′)TM′(x− x′)|
≤ |(x− x′)T (M−M′)(x− x′)|
≤ ‖x− x′‖2‖M−M′‖F
≤ max

x,x′
‖x− x′‖2‖M−M′‖F

Setting k = maxx,x′ ‖x− x′‖2 concludes the proof.
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